Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 303-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and $L^\infty$ norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.
@article{IM2_1983_20_2_a5,
     author = {A. A. Pankov},
     title = {Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {303--332},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a5/}
}
TY  - JOUR
AU  - A. A. Pankov
TI  - Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 303
EP  - 332
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a5/
LA  - en
ID  - IM2_1983_20_2_a5
ER  - 
%0 Journal Article
%A A. A. Pankov
%T Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities
%J Izvestiya. Mathematics 
%D 1983
%P 303-332
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a5/
%G en
%F IM2_1983_20_2_a5
A. A. Pankov. Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 303-332. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a5/

[1] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953

[2] Zhikov V. V., Levitan B. M., “Teoriya Favara”, Uspekhi matem. nauk, 32:2 (1977), 123–171 | MR | Zbl

[3] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Moskovskii universitet, M., 1978 | MR

[4] Amerio L., Prouse G., Almost periodic functions and functional equations, Van Nostrand, N. Y., 1971 | MR | Zbl

[5] Fink A. M., Almost periodic differential equations, Lect. Notes Math., 377, Berlin, 1974 | MR | Zbl

[6] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti-periodicheskie kolebaniya, Nauka, M., 1970 | MR

[7] Prouse G., “Periodic or almost periodic solutions of a non-linear functional equation. I–IV”, Rend. Accad. Naz. Lincei (8), 43 (1963), 161–167, 281–287, 448–452 ; 44 (1968), 1–10 | MR | MR

[8] Zhikov V. V., “Monotonnost v teorii pochti-periodicheskikh reshenii nelineinykh operatornykh uravnenii”, Matem. sb., 90:2 (1973), 214–228

[9] Lions Zh.-L., Nekotorye metody resheniya neliineinykh kraevykh zadach, Mir, M., 1972 | MR

[10] Dyuvo K., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[11] Brézis H., “Problémes unilateraux”, J. Math. Pure Appl., 51 (1972), 1–168 | MR | Zbl

[12] Biroli M., “Sur les solutions presque périodiques des inéquations d'evolution”, Ann. Mat. Pura Appl., 88 (1971), 51–70 | DOI | MR | Zbl

[13] Biroli M., “Sur les solutions bornées ou presque périodiques des équations d'evolution multivoques sur un espace de Hilbert”, Ricerche Mat., 21 (1972), 17–47 | MR | Zbl

[14] Biroli M., “Sur les solutions bornées et presque périodiques des équations et inéquations d'evolution”, Ann. Mat. Pura Appl., 93 (1972), 1–79 | DOI | MR | Zbl

[15] Pankov A. A., “Ogranichennye i pochti-periodicheskie resheniya evolyutsionnykh variatsionnykh neravenstv”, Matem. sb., 108:4 (1979), 551–556 | MR

[16] Pankov A. A., “O pochti-periodicheskikh resheniyakh evolyutsionnykh variatsionnykh neravenstv”, Dokl. AN SSSR, 241:3 (1978), 286–289 | MR | Zbl

[17] Shubin M. A., “Pochti-periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, Uspekhi matem. nauk, 33:2 (1978), 3–47 | MR | Zbl

[18] Khyuit E., Ross K., Abstraktnyi garmonicheskii analiz, t. I, Nauka, M., 1975

[19] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[20] Khartman R., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[21] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[22] Biroli M., “Sull' unicita della soluzione limitata di una dizequaziona variazionale d'evoluzione”, Rend. Accad. Naz. Lincei (8), 48 (1970), 409–411 | MR | Zbl

[23] Zhikov V. V., “Nekotorye voprosy dopustimosti i dikhotomii. Printsip usredneniya”, Izv. AN SSSR. Seriya matem., 40:6 (1976), 1380–1408 | MR | Zbl

[24] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[25] Tribel X., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[26] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[27] Tartar J., “Interpolation pop linéaire et regularité”, J. Funct. Anal., 9 (1972), 469–489 | DOI | MR | Zbl

[28] Shubin M. A., “Lokalnaya teoriya Favara”, Vestnik Mosk. universiteta, 1:2 (1979), 31–36 | MR

[29] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67:4 (1965), 609–642 | MR | Zbl

[30] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, L., 1950