The Brauer group of an Abelian variety over a~finite field
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 203-234
Voir la notice de l'article provenant de la source Math-Net.Ru
The author presents a formula for the order of a component of the Brauer group of an Abelian variety over a finite field, where the order of the component in question is relatively prime to the characteristic of the field. For principally polarized Abelian surfaces this formula becomes the well-known Artin–Tate formula. A natural nondegenerate pairing between the components of the Brauer groups of an Abelian variety and its Picard variety is constructed.
Bibliography: 27 titles.
@article{IM2_1983_20_2_a1,
author = {Yu. G. Zarhin},
title = {The {Brauer} group of an {Abelian} variety over a~finite field},
journal = {Izvestiya. Mathematics },
pages = {203--234},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a1/}
}
Yu. G. Zarhin. The Brauer group of an Abelian variety over a~finite field. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 203-234. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a1/