Cycles on simple Abelian varieties of prime dimension
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 157-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hodge conjecture on algebraic cycles is proved for all simple Abelian varieties of prime dimension over the field of complex numbers. Bibliography: 10 titles.
@article{IM2_1983_20_1_a9,
     author = {S. G. Tankeev},
     title = {Cycles on simple {Abelian} varieties of prime dimension},
     journal = {Izvestiya. Mathematics },
     pages = {157--171},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a9/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Cycles on simple Abelian varieties of prime dimension
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 157
EP  - 171
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a9/
LA  - en
ID  - IM2_1983_20_1_a9
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Cycles on simple Abelian varieties of prime dimension
%J Izvestiya. Mathematics 
%D 1983
%P 157-171
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a9/
%G en
%F IM2_1983_20_1_a9
S. G. Tankeev. Cycles on simple Abelian varieties of prime dimension. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 157-171. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a9/

[1] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 | MR | Zbl | MR

[2] Delin Ya., “Teoriya Khodzha. II”, Matematika, 17:5 (1973), 3–56 | MR

[3] Deligne P., “La conjecture de Weil pour les surfaces $K3$”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl

[4] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proc. Inter. Cong. Camb. Mass., 1 (1950), 182–192 | MR

[5] Zarkhin Yu. G., Kogomologii algebraicheskikh mnogoobrazii i predstavleniya poluprostykh algebr Li, preprint NTsBI AN SSSR, Puschino, 1980 | Zbl

[6] Mumford D., “A note on Shimura's paper “Discontinuous Groups and Abelian Varieties””, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[7] Pohlmann H., “Algebraic cycles on abelian varieties of complex multiplication type”, Ann. Math., 88 (1968), 161–180 | DOI | MR | Zbl

[8] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, New York, 1965, 93–110 | MR | Zbl

[9] Tankeev S. G., “Ob algebraicheskikh tsiklakh na abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 42:3 (1978), 667–696 | MR | Zbl

[10] Tankeev S. G., “Ob algebraicheskikh tsiklakh na prostykh 5-mernykh abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 793–823 | MR