Convergence to a~Poisson distribution for certain models of particle motion
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many authors have considered the problem of convergence of a random point field to a Poisson field for various types of particle motion. In this article a general construction is presented which yields many of the previously proven results as special cases, along with a number of new examples of models of motion and initial random point fields such that there is convergence to Poisson fields and mixtures of them. Bibliography: 13 titles.
@article{IM2_1983_20_1_a8,
     author = {Yu. M. Sukhov},
     title = {Convergence to {a~Poisson} distribution for certain models of particle motion},
     journal = {Izvestiya. Mathematics },
     pages = {137--155},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a8/}
}
TY  - JOUR
AU  - Yu. M. Sukhov
TI  - Convergence to a~Poisson distribution for certain models of particle motion
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 137
EP  - 155
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a8/
LA  - en
ID  - IM2_1983_20_1_a8
ER  - 
%0 Journal Article
%A Yu. M. Sukhov
%T Convergence to a~Poisson distribution for certain models of particle motion
%J Izvestiya. Mathematics 
%D 1983
%P 137-155
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a8/
%G en
%F IM2_1983_20_1_a8
Yu. M. Sukhov. Convergence to a~Poisson distribution for certain models of particle motion. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a8/

[1] Dobrushin R. L., “O zakone Puassona dlya raspredeleniya chastits v prostranstve”, Ukr. matem. zhurnal, 8:2 (1956), 127–134 | Zbl

[2] Matthes K., Kerstan J., Mecke J., Infinitely divisible point processes, Wiley and Sons, N. Y., 1978 ; Mattes K., Kerstan I., Meke I., Bezgranichno delimye tochechnye protsessy, Nauka, M., 1981 | MR | Zbl

[3] Dobrushin R. L., Sukhov Yu. M., “Vremennaya asimptotika dlya nekotorykh vyrozhdennykh modelei evolyutsii sistem s beskonechnym chislom chastits”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 14, VINITI AN SSSR, M., 1979, 147–254 | MR

[4] Boldrighini G., Dobrushin R. L., Sukhov Y. M., Time asymptotics for some degenerate models of the evolution of infinite particle systems, preprint, Camerino University, 1980

[5] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, t. I, Nauka, M., 1971 | MR

[6] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei, Nauka, M., 1973 | MR

[7] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[8] Fichtner K.-H., Kerstan J., “Approximation von Mischungen Poissonischer Punktprozesse durch verschobene Punktprozesse”, Serdica, 4:4 (1978), 367–374 | MR

[9] Tempelman A. A., “Ergodicheskie teoremy dlya obschikh dinamicheskikh sistem”, Trudy Mosk. matem. o-va, 26 (1972), 95–132 | MR

[10] Kallenberg O., “On the asymptotic behavior of line processes and systems of non-interacting particles”, Z. Wahrscheinlichkeitstheorie vrw Geb., 43 (1978), 65–95 | DOI | MR | Zbl

[11] Kallenberg O., On the independence of velocities in a system of non-interacting particles, preprint, Chalmers University of Technology and University of Göteborg, 1977

[12] Jacobs P. A., “A Poisson convergence theorem for a particle system with dependent constant velocities”, Stoch. Processes Appl., 6:1 (1977), 41–52 | DOI | MR | Zbl

[13] Preston C., Gibbs states on countable sets, Cambridge Univ. Press., 1974 ; Preston K., Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR | Zbl | MR