On the interconnection of local and global approximations by holomorphic functions
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 103-118
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a function $f\in\operatorname{Lip}(\alpha,X)$, $\alpha>2/3$, can be approximated locally outside its zero set by holomorphic functions, then it can be approximated also on the whole compact set $X$. This implies that if
$f\in\operatorname{Lip}(\alpha,X)$, $\alpha>2/3$, and $f^2$ can be approximated by holomorphic functions on $X$, then so can $f$.
Bibliography: 5 titles.
@article{IM2_1983_20_1_a6,
author = {P. V. Paramonov},
title = {On the interconnection of local and global approximations by holomorphic functions},
journal = {Izvestiya. Mathematics },
pages = {103--118},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a6/}
}
P. V. Paramonov. On the interconnection of local and global approximations by holomorphic functions. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 103-118. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a6/