On the interconnection of local and global approximations by holomorphic functions
Izvestiya. Mathematics, Tome 20 (1983) no. 1, pp. 103-118
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that if a function $f\in\operatorname{Lip}(\alpha,X)$, $\alpha>2/3$, can be approximated locally outside its zero set by holomorphic functions, then it can be approximated also on the whole compact set $X$. This implies that if $f\in\operatorname{Lip}(\alpha,X)$, $\alpha>2/3$, and $f^2$ can be approximated by holomorphic functions on $X$, then so can $f$. Bibliography: 5 titles.
@article{IM2_1983_20_1_a6,
author = {P. V. Paramonov},
title = {On the interconnection of local and global approximations by holomorphic functions},
journal = {Izvestiya. Mathematics},
pages = {103--118},
year = {1983},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a6/}
}
P. V. Paramonov. On the interconnection of local and global approximations by holomorphic functions. Izvestiya. Mathematics, Tome 20 (1983) no. 1, pp. 103-118. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a6/
[1] Vitushkin A. G., “Analiticheskaya emkost v zadachakh teorii priblizhenii”, Uspekhi matem. nauk, 22:6 (1967), 141–199 | MR
[2] Davie A. M., Oksendal B. K., “Rational approximation on the union of sets”, Poc. Amer. Math. Soc., 29:3 (1971), 581–584 | DOI | MR | Zbl
[3] Melnikov M. S., “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71:4 (1966), 503–514 | MR
[4] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl
[5] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR