Approximation of infinite-zone potentials by finite-zone potentials
Izvestiya. Mathematics, Tome 20 (1983) no. 1, pp. 55-87
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper it is proved that each infinite-zone potential of the class considered in the paper “Almost periodicity of infinite-zone potentials” (Izv. Akad. Nauk SSSR Ser. Mat., 1981, v. 45, No 2, pp. 291–320) is the uniform limit of finite-zone potentials on the entire real line. The proof is based on a detailed study of the problem of Jacobi inversion on a two-sheeted Riemann surface with an infinite number of branch points. Bibliography: 5 titles.
@article{IM2_1983_20_1_a3,
author = {B. M. Levitan},
title = {Approximation of infinite-zone potentials by finite-zone potentials},
journal = {Izvestiya. Mathematics},
pages = {55--87},
year = {1983},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a3/}
}
B. M. Levitan. Approximation of infinite-zone potentials by finite-zone potentials. Izvestiya. Mathematics, Tome 20 (1983) no. 1, pp. 55-87. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a3/
[1] Levitan B. M., “Pochti periodichnost beskonechno-zonnykh potentsialov”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 291–320 | MR | Zbl
[2] Novikov S. P., “Periodicheskaya zadacha Kortevega de Friza. I”, Funkts. analiz, 8:3 (1974), 43–53 | MR
[3] Lax P., “Almost periodic Behaviour of Nonlinear Waves”, Adv. in Math., 16 (1975), 368–379 | DOI | MR | Zbl
[4] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl
[5] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR