Approximation of infinite-zone potentials by finite-zone potentials
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 55-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that each infinite-zone potential of the class considered in the paper “Almost periodicity of infinite-zone potentials” (Izv. Akad. Nauk SSSR Ser. Mat., 1981, v. 45, № 2, pp. 291–320) is the uniform limit of finite-zone potentials on the entire real line. The proof is based on a detailed study of the problem of Jacobi inversion on a two-sheeted Riemann surface with an infinite number of branch points. Bibliography: 5 titles.
@article{IM2_1983_20_1_a3,
     author = {B. M. Levitan},
     title = {Approximation of infinite-zone potentials by finite-zone potentials},
     journal = {Izvestiya. Mathematics },
     pages = {55--87},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a3/}
}
TY  - JOUR
AU  - B. M. Levitan
TI  - Approximation of infinite-zone potentials by finite-zone potentials
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 55
EP  - 87
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a3/
LA  - en
ID  - IM2_1983_20_1_a3
ER  - 
%0 Journal Article
%A B. M. Levitan
%T Approximation of infinite-zone potentials by finite-zone potentials
%J Izvestiya. Mathematics 
%D 1983
%P 55-87
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a3/
%G en
%F IM2_1983_20_1_a3
B. M. Levitan. Approximation of infinite-zone potentials by finite-zone potentials. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 55-87. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a3/

[1] Levitan B. M., “Pochti periodichnost beskonechno-zonnykh potentsialov”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 291–320 | MR | Zbl

[2] Novikov S. P., “Periodicheskaya zadacha Kortevega de Friza. I”, Funkts. analiz, 8:3 (1974), 43–53 | MR

[3] Lax P., “Almost periodic Behaviour of Nonlinear Waves”, Adv. in Math., 16 (1975), 368–379 | DOI | MR | Zbl

[4] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl

[5] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR