Topological constructions connected with many-valued formal groups
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 1-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, to each many-valued formal group in cobordism theory there are associated generalized cohomology theories, analogous to $K$-theory and cobordism theory, and a geometric realization of many-valued formal groups in cobordism is obtained. In addition, there is proposed a construction, with the help of which all formal groups known in topology are obtained. Bibliography: 14 titles.
@article{IM2_1983_20_1_a0,
     author = {V. M. Buchstaber and A. N. Kholodov},
     title = {Topological constructions connected with many-valued formal groups},
     journal = {Izvestiya. Mathematics },
     pages = {1--25},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. N. Kholodov
TI  - Topological constructions connected with many-valued formal groups
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 1
EP  - 25
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a0/
LA  - en
ID  - IM2_1983_20_1_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. N. Kholodov
%T Topological constructions connected with many-valued formal groups
%J Izvestiya. Mathematics 
%D 1983
%P 1-25
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a0/
%G en
%F IM2_1983_20_1_a0
V. M. Buchstaber; A. N. Kholodov. Topological constructions connected with many-valued formal groups. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 1-25. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a0/

[1] Adams J. F., “Lectures on generalized cohomology”, Category theory, homology theory and their applications. III (Battele Inst. Conf., Seattle, Wash., 1968), 3, Berlin, 1969, 1–138 | MR | Zbl

[2] Borel A., “O kogomologiyakh glavnykh rassloennykh prostranstv i odnorodnykh prostranstv kompaktnykh grupp Li”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 163–246 | MR

[3] Bukhshtaber V. M., “Kharakter Chzhenya–Dolda v teorii kobordizmov. I”, Matem. sb., 83(125) (1970), 575–595 | Zbl

[4] Bukhshtaber V. M., “Topologicheskie prilozheniya teorii dvukhznachnykh formalnykh grupp”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 130–184 | MR | Zbl

[5] Bukhshtaber V. M., “Kharakteristicheskie klassy v kobordizmakh i topologicheskie prilozheniya teorii odnoznachnykh i dvuznachnykh formalnykh grupp”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 10, VINITI AN SSSR, M., 1978, 5–178 | MR

[6] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84(126) (1971), 81–118 | Zbl

[7] Dold A., “Sootnosheniya mezhdu ordinarnymi i ekstraordinarnymi teoriyami gomologii”, Matematika, 1965, no. 4, 8–14 | MR

[8] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[9] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 855–951 | Zbl

[10] Peresetskii A. A., “$SU$-kobordizmy i formalnye gruppy”, Matem. sb., 88(130) (1972), 536–545

[11] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[12] Snaith P., “Algebraic cobordism and $K$-theory”, Mem. Amer. Math. Soc., 21:221 (1979) | MR

[13] Kholodov A. N., “Algebraicheskaya teoriya mnogoznachnykh formalnykh grupp”, Matem. sb., 114(156) (1981), 299–321 | MR | Zbl

[14] Konner P., Floid E., “O sootnoshenii teorii kobordizmov i $K$-teorii”, dopolnenie k knige, Gladkie periodicheskie otobrazheniya, Mir, M., 1969