On the word and divisibility problems in semigroups and groups without cycles
Izvestiya. Mathematics, Tome 19 (1982) no. 3, pp. 643-656
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves the solvability of the right and left divisibility problems, and consequently the word problem in semigroups with a system of defining relations that do not contain cycles. In particular the solvability of the word problem in groups without cycles is proved. Bibliography: 3 titles.
@article{IM2_1982_19_3_a6,
author = {O. A. Sarkisyan},
title = {On~the word and divisibility problems in semigroups and groups without cycles},
journal = {Izvestiya. Mathematics},
pages = {643--656},
year = {1982},
volume = {19},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a6/}
}
O. A. Sarkisyan. On the word and divisibility problems in semigroups and groups without cycles. Izvestiya. Mathematics, Tome 19 (1982) no. 3, pp. 643-656. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a6/
[1] Adyan S. I., Opredelyayuschie sootnosheniya i algoritmicheskie problemy dlya grupp i polugrupp, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 85, 1966 | Zbl
[2] Adyan S. I., “O preobrazovaniyakh slov v polugruppe, zadannoi sistemoi opredelyayuschikh sootnoshenii”, Algebra i logika, 15:6 (1976), 611–621 | MR | Zbl
[3] Sarkisyan O. A., “Nekotorye sootnosheniya mezhdu problemami tozhdestva i delimosti v gruppakh i polugruppakh”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 909–920 | MR