A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 559-610.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hilbert boundary value problem corresponding to a convolution equation on a finite interval, with kernel belonging to a class singled out earlier by the author, is reduced to a system of integral equations. The solvability of this system in appropriate weighted spaces is studied and an algorithm for constructing a canonical matrix of solutions of the Hilbert problem from certain solutions of the system. Estimates of partial indices are given. Bibliography: 15 titles.
@article{IM2_1982_19_3_a4,
     author = {B. V. Pal'tsev},
     title = {A~method for constructing a~canonical matrix of solutions of {a~Hilbert} problem arising in the solution of convolution equations on~a~finite interval},
     journal = {Izvestiya. Mathematics },
     pages = {559--610},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 559
EP  - 610
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/
LA  - en
ID  - IM2_1982_19_3_a4
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
%J Izvestiya. Mathematics 
%D 1982
%P 559-610
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/
%G en
%F IM2_1982_19_3_a4
B. V. Pal'tsev. A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 559-610. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/

[1] Paltsev B. V., “Uravneniya svertki na konechnom intervale dlya odnogo klassa simvolov, imeyuschikh stepennuyu asimptotiku na beskonechnosti”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 322–394 | MR

[2] Ukai S., “Asymptotic distribution of eigenvalues of kernel in the Kirkwood–Riseman integral equation”, J. Math. Phys., 12:1 (1971), 83–92 | DOI | MR | Zbl

[3] Paltsev B. V., “Asimptotika spektra i sobstvennykh funktsii operatorov svertki na konechnom intervale s odnorodnym preobrazovaniem Fure yadra”, Dokl. AN SSSR, 218:1 (1974), 28–31

[4] Paltsev B. V., “O zadache Dirikhle dlya odnogo psevdodifferentsialnogo uravneniya, vstrechayuschegosya v teorii sluchainykh protsessov”, Izv. AN SSSR. Ser. matem., 41:6 (1977), 1348–1387 | MR

[5] Paltsev B. V., “Obobschenie metoda Vinera–Khopfa dlya uravnenii svertki na konechnom intervale s simvolami, imeyuschimi stepennuyu asimptotiku na beskonechnosti”, Matem. sb., 113(155):3 (1980), 355–399 | MR

[6] Mandzhavidze G. F., Khvedelidze B. V., “O zadache lineinogo sopryazheniya i singulyarnykh integralnykh uravneniyakh s yadrom Koshi s nepreryvnymi koeffitsientami”, Tr. Tbilisskogo matem. in-ta, 28, 1962, 85–105 | Zbl

[7] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki, 7, 1975, 5–162

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[9] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977 | MR | Zbl

[10] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[11] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., L., 1948

[12] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Chast vtoraya. Transtsendentnye funktsii, Fizmatgiz, M., 1963

[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1973

[14] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR

[15] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965