Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1982_19_3_a4, author = {B. V. Pal'tsev}, title = {A~method for constructing a~canonical matrix of solutions of {a~Hilbert} problem arising in the solution of convolution equations on~a~finite interval}, journal = {Izvestiya. Mathematics }, pages = {559--610}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {1982}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/} }
TY - JOUR AU - B. V. Pal'tsev TI - A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval JO - Izvestiya. Mathematics PY - 1982 SP - 559 EP - 610 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/ LA - en ID - IM2_1982_19_3_a4 ER -
%0 Journal Article %A B. V. Pal'tsev %T A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval %J Izvestiya. Mathematics %D 1982 %P 559-610 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/ %G en %F IM2_1982_19_3_a4
B. V. Pal'tsev. A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 559-610. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/
[1] Paltsev B. V., “Uravneniya svertki na konechnom intervale dlya odnogo klassa simvolov, imeyuschikh stepennuyu asimptotiku na beskonechnosti”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 322–394 | MR
[2] Ukai S., “Asymptotic distribution of eigenvalues of kernel in the Kirkwood–Riseman integral equation”, J. Math. Phys., 12:1 (1971), 83–92 | DOI | MR | Zbl
[3] Paltsev B. V., “Asimptotika spektra i sobstvennykh funktsii operatorov svertki na konechnom intervale s odnorodnym preobrazovaniem Fure yadra”, Dokl. AN SSSR, 218:1 (1974), 28–31
[4] Paltsev B. V., “O zadache Dirikhle dlya odnogo psevdodifferentsialnogo uravneniya, vstrechayuschegosya v teorii sluchainykh protsessov”, Izv. AN SSSR. Ser. matem., 41:6 (1977), 1348–1387 | MR
[5] Paltsev B. V., “Obobschenie metoda Vinera–Khopfa dlya uravnenii svertki na konechnom intervale s simvolami, imeyuschimi stepennuyu asimptotiku na beskonechnosti”, Matem. sb., 113(155):3 (1980), 355–399 | MR
[6] Mandzhavidze G. F., Khvedelidze B. V., “O zadache lineinogo sopryazheniya i singulyarnykh integralnykh uravneniyakh s yadrom Koshi s nepreryvnymi koeffitsientami”, Tr. Tbilisskogo matem. in-ta, 28, 1962, 85–105 | Zbl
[7] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki, 7, 1975, 5–162
[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl
[9] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977 | MR | Zbl
[10] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[11] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., L., 1948
[12] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Chast vtoraya. Transtsendentnye funktsii, Fizmatgiz, M., 1963
[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1973
[14] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR
[15] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965