A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 559-610

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hilbert boundary value problem corresponding to a convolution equation on a finite interval, with kernel belonging to a class singled out earlier by the author, is reduced to a system of integral equations. The solvability of this system in appropriate weighted spaces is studied and an algorithm for constructing a canonical matrix of solutions of the Hilbert problem from certain solutions of the system. Estimates of partial indices are given. Bibliography: 15 titles.
@article{IM2_1982_19_3_a4,
     author = {B. V. Pal'tsev},
     title = {A~method for constructing a~canonical matrix of solutions of {a~Hilbert} problem arising in the solution of convolution equations on~a~finite interval},
     journal = {Izvestiya. Mathematics },
     pages = {559--610},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 559
EP  - 610
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/
LA  - en
ID  - IM2_1982_19_3_a4
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
%J Izvestiya. Mathematics 
%D 1982
%P 559-610
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/
%G en
%F IM2_1982_19_3_a4
B. V. Pal'tsev. A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 559-610. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a4/