Boundedness of the degree of Fano threefolds
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 521-558.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem, announced earlier by V. A. Iskovskih with a sketch of the proof, is established: if $V$ is a Fano 3-fold (i.e. $V$ is projective and the anticanonical class $-K_V$ is ample), then $(-K_V)^3\leqslant64$. Bibliography: 12 titles.
@article{IM2_1982_19_3_a3,
     author = {S. M. L'vovskii},
     title = {Boundedness of the degree of {Fano} threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {521--558},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a3/}
}
TY  - JOUR
AU  - S. M. L'vovskii
TI  - Boundedness of the degree of Fano threefolds
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 521
EP  - 558
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a3/
LA  - en
ID  - IM2_1982_19_3_a3
ER  - 
%0 Journal Article
%A S. M. L'vovskii
%T Boundedness of the degree of Fano threefolds
%J Izvestiya. Mathematics 
%D 1982
%P 521-558
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a3/
%G en
%F IM2_1982_19_3_a3
S. M. L'vovskii. Boundedness of the degree of Fano threefolds. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 521-558. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a3/

[1] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, VINITI AN SSSR, M., 1979, 59–157 | MR

[2] Shokurov V. V., “Suschestvovanie pryamoi na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 922–964 | MR | Zbl

[3] Demin I. V., “Ogranichennost stepeni mnogoobrazii Fano, predstavimykh v vide rassloenii na koniki”, Uspekhi matem. nauk, 36:3 (1981), 209–210 | MR | Zbl

[4] Hartshorne R., Algebraic geometry, New York, 1977 | MR

[5] Griffiths Ph. A., Harris J., Principles of algebraic geometry, New York, 1978 | MR

[6] Schlessinger M., “Functors of Artin rings”, Trans. Amer. Math. Soc., 130 (1968), 205–222 | DOI | MR

[7] Semple J. G., Roth L., Introduction to algebraic geometry, Oxford, 1949 | MR

[8] Saint-Donat B., “Projective models of K3 surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[9] Mori S., “Projective manifolds with ample tangent bundles”, Ann. Math., 110 (1979), 593–606 | DOI | MR | Zbl

[10] Reid M., Lines on Fano 3-folds according to Shokurov, Institut Mittag-Leffler, 1980, report No 11

[11] Mumford D., “The topology of normal singularities of an algebraic surface and a criterion of simplicity”, Publ. Math. IHES, 1961, no. 9, 5–22 | MR | Zbl

[12] Tyurin A. N., “Srednii yakobian trekhmernykh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, VINITI AN SSSR, M., 1979, 5–57 | MR