The Fano surface of the Veronese double cone
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 377-443

Voir la notice de l'article provenant de la source Math-Net.Ru

This article studies the Fano surface $\mathscr F$ of lines on the Veronese double cone $X$ branched in its intersection with a cubic in $P^6$; it is the last variety in the series of Fano 3-folds of index two. The irregularity of the surface $\mathscr F$ is computed, its Abel–Jacobi mapping $\Phi$ into the intermediate Jacobian of the body $X$ is constructed, the Gauss mapping for $\Phi(\mathscr F)$ is studied, and a theorem on uniquely recovering $X$ from $\Phi(\mathscr F)$ is proved. Bibliography: 22 titles.
@article{IM2_1982_19_2_a9,
     author = {A. S. Tikhomirov},
     title = {The {Fano} surface of the {Veronese} double cone},
     journal = {Izvestiya. Mathematics },
     pages = {377--443},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a9/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - The Fano surface of the Veronese double cone
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 377
EP  - 443
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a9/
LA  - en
ID  - IM2_1982_19_2_a9
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T The Fano surface of the Veronese double cone
%J Izvestiya. Mathematics 
%D 1982
%P 377-443
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a9/
%G en
%F IM2_1982_19_2_a9
A. S. Tikhomirov. The Fano surface of the Veronese double cone. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 377-443. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a9/