The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 285-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. P. Novikov's conjecture that the relations between theta functions that follow from the nonlinear Kadomtsev–Petviashvili equation, well known in mathematical physics, characterize the Jacobian varieties of Riemann surfaces among all Abelian varieties is proved in this paper, except for the possibility of superfluous components. Bibliography: 15 titles.
@article{IM2_1982_19_2_a4,
     author = {B. A. Dubrovin},
     title = {The {Kadomtsev--Petviashvili} equation and the relations between the periods of holomorphic differentials on {Riemann} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {285--296},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/}
}
TY  - JOUR
AU  - B. A. Dubrovin
TI  - The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 285
EP  - 296
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/
LA  - en
ID  - IM2_1982_19_2_a4
ER  - 
%0 Journal Article
%A B. A. Dubrovin
%T The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces
%J Izvestiya. Mathematics 
%D 1982
%P 285-296
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/
%G en
%F IM2_1982_19_2_a4
B. A. Dubrovin. The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/

[1] Griffiths P., Harris J., Principles of algebraic geometry, Wiley Intersci. Publ., 1978 | MR | Zbl

[2] Fay J., “Theta-functions on Riemann surfaces”, Lect. Notes in Math., 352, Springer, 1973 | MR | Zbl

[3] Schottky F., “Zur Theorie der Abel'schen Funktionen von vier Variabeln”, J. Reine Angew. Math., 102 (1888), 304–352

[4] Schottky F., “Über die Moduln der Thetafunktionen”, Acta Math., 27 (1903), 235–288 | DOI | MR | Zbl

[5] Schottky F., Jung H., “Neue Sätze über Symmetralfunktionen und die Abel'schen Funktionen der Riemann'schen Theorie”, Preuss. Akad. Wiss. (Berlin), Phys. Math. Kl., 1 (1909), 282–297

[6] Farkas H. M., Ranch H. E., “Period relations of Schottky type on Riemann surfaces”, Ann. Math., 92:3 (1970), 434–461 | DOI | MR | Zbl

[7] Andreotti A., Mayer A. L., “On period relations for abelian integrals on algebraic curves”, Ann. Scuola Norm. Super. Pisa, Ser. 3, 21:2 (1967), 189–238 | MR | Zbl

[8] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980 | MR

[9] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz, 11:1 (1977), 15–31 | MR | Zbl

[10] Dubrovin B. A., “O gipoteze S. P. Novikova v teorii teta-funktsii i nelineinykh uravnenii tipa Kortevega–de Friza i Kadomtseva–Petviashvili”, Dokl. AN SSSR, 251:3 (1980), 541–544 | MR

[11] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi matem. nauk, 36:2 (981), 11–80 | MR | Zbl

[12] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Sovremennye problemy matematiki, 15, 1980, 3–94 | MR | Zbl

[13] Beauville A., “Prym varieties and the Schottky problem”, Invent. Math., 41:2 (1977), 149–196 | DOI | MR | Zbl

[14] Satake I., “On the compactification of the Siegel space”, J. Indian Math. Soc., 20 (1956), 259–281 | MR | Zbl

[15] Baity W. L., “On the theory of $\theta$-functions, the moduli of abelian varieties and the module of curves”, Ann. of Math., 75:2 (1962), 342–381 | DOI | MR