The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 285-296

Voir la notice de l'article provenant de la source Math-Net.Ru

S. P. Novikov's conjecture that the relations between theta functions that follow from the nonlinear Kadomtsev–Petviashvili equation, well known in mathematical physics, characterize the Jacobian varieties of Riemann surfaces among all Abelian varieties is proved in this paper, except for the possibility of superfluous components. Bibliography: 15 titles.
@article{IM2_1982_19_2_a4,
     author = {B. A. Dubrovin},
     title = {The {Kadomtsev--Petviashvili} equation and the relations between the periods of holomorphic differentials on {Riemann} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {285--296},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/}
}
TY  - JOUR
AU  - B. A. Dubrovin
TI  - The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 285
EP  - 296
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/
LA  - en
ID  - IM2_1982_19_2_a4
ER  - 
%0 Journal Article
%A B. A. Dubrovin
%T The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces
%J Izvestiya. Mathematics 
%D 1982
%P 285-296
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/
%G en
%F IM2_1982_19_2_a4
B. A. Dubrovin. The Kadomtsev--Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a4/