Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 241-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the authors obtain lower bounds for the radius of convergence of power series which define a mapping from one nondegenerate real analytic hypersurface in $\mathbf C^n$ to another. For certain classes of surfaces a complete list is given of the parameters which substantially influence the size of the radius of convergence. In particular, for compact hypersurfaces with positive definite Levi form the radius is bounded by a constant depending on the pair of surfaces and not on the mapping. Bibliography: 5 titles.
@article{IM2_1982_19_2_a2,
     author = {V. K. Beloshapka and A. G. Vitushkin},
     title = {Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {241--259},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
AU  - A. G. Vitushkin
TI  - Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 241
EP  - 259
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a2/
LA  - en
ID  - IM2_1982_19_2_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%A A. G. Vitushkin
%T Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces
%J Izvestiya. Mathematics 
%D 1982
%P 241-259
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a2/
%G en
%F IM2_1982_19_2_a2
V. K. Beloshapka; A. G. Vitushkin. Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 241-259. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a2/

[1] Alexander H., “Holomorphic mappings from the ball and polydisc”, Math. Ann., 209:3 (1974), 245–256 | DOI | MR

[2] Pinchuk S. I., “O golomorfnykh otobrazheniyakh veschestvenno analiticheskikh giperpoverkhnostei”, Matem. sbornik, 105(147):4 (1978), 574–593 | MR | Zbl

[3] Chern S., Moser I., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3,4 (1974), 219–271 | DOI | MR

[4] Beloshapka V. K., “O razmernosti grupp avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 243–266 | MR | Zbl

[5] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 620–645 | MR | Zbl