Normal subgroups of free periodic groups
Izvestiya. Mathematics, Tome 19 (1982) no. 2, pp. 215-229
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the concept of metaperiodic word of a given exponent is introduced, and transformations (reversals) of such words are considered. It is proved that in a free periodic group $B(m,n)$ of any odd exponent $n\geqslant665$ with $m\geqslant66$ generators an infinite independent system of complementary relations can be singled out. It follows that in $B(m,n)$ there exist infinite ascending and descending chains of normal subgroups and also a recursively defined factor group of $B(m,n)$ with an unsolvable identity problem. Bibliography: 4 titles.
@article{IM2_1982_19_2_a0,
author = {S. I. Adian},
title = {Normal subgroups of free periodic groups},
journal = {Izvestiya. Mathematics},
pages = {215--229},
year = {1982},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a0/}
}
S. I. Adian. Normal subgroups of free periodic groups. Izvestiya. Mathematics, Tome 19 (1982) no. 2, pp. 215-229. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a0/
[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[2] Adian S. I., Classifications of periodic words and their application in group theory, Lecture Notes in Mathematics, 803, 1980 | MR
[3] Shirvanyan V. L., “Vlozhenie gruppy $B(\infty,n)$ v gruppu $B(2,n)$”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 190–208 | MR | Zbl
[4] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR