Normal subgroups of free periodic groups
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 215-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the concept of metaperiodic word of a given exponent is introduced, and transformations (reversals) of such words are considered. It is proved that in a free periodic group $B(m,n)$ of any odd exponent $n\geqslant665$ with $m\geqslant66$ generators an infinite independent system of complementary relations can be singled out. It follows that in $B(m,n)$ there exist infinite ascending and descending chains of normal subgroups and also a recursively defined factor group of $B(m,n)$ with an unsolvable identity problem. Bibliography: 4 titles.
@article{IM2_1982_19_2_a0,
     author = {S. I. Adian},
     title = {Normal subgroups of free periodic groups},
     journal = {Izvestiya. Mathematics },
     pages = {215--229},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a0/}
}
TY  - JOUR
AU  - S. I. Adian
TI  - Normal subgroups of free periodic groups
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 215
EP  - 229
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a0/
LA  - en
ID  - IM2_1982_19_2_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%T Normal subgroups of free periodic groups
%J Izvestiya. Mathematics 
%D 1982
%P 215-229
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a0/
%G en
%F IM2_1982_19_2_a0
S. I. Adian. Normal subgroups of free periodic groups. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 215-229. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a0/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[2] Adian S. I., Classifications of periodic words and their application in group theory, Lecture Notes in Mathematics, 803, 1980 | MR

[3] Shirvanyan V. L., “Vlozhenie gruppy $B(\infty,n)$ v gruppu $B(2,n)$”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 190–208 | MR | Zbl

[4] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR