Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1982_19_1_a9, author = {N. V. Shcherbina}, title = {The {Levi} form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy}, journal = {Izvestiya. Mathematics }, pages = {171--188}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {1982}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/} }
TY - JOUR AU - N. V. Shcherbina TI - The Levi form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy JO - Izvestiya. Mathematics PY - 1982 SP - 171 EP - 188 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/ LA - en ID - IM2_1982_19_1_a9 ER -
%0 Journal Article %A N. V. Shcherbina %T The Levi form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy %J Izvestiya. Mathematics %D 1982 %P 171-188 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/ %G en %F IM2_1982_19_1_a9
N. V. Shcherbina. The Levi form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 171-188. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/
[1] Sommer F., “Komplex-analytische Blättering reeler Mannigfaltigkeiten in $\mathbf{C}^m$”, Math. Ann., 136 (1958), 111–133 | DOI | MR | Zbl
[2] Rossi H., “The local maximum modulus principle”, Ann. Math., 72:1 (1960), 1–11 | DOI | MR | Zbl
[3] Bychkov S. N., “O geometricheskikh svoistvakh granitsy oblasti golomorfnosti”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 46–62 | MR | Zbl
[4] Pflug P., “Über polynomiale Funktionen auf Holomorphiegebieten”, Math. Z., 139 (1974), 133–139 | DOI | MR | Zbl
[5] Hakim M., Sibony N., “Frontiere de Shilov et spectre de $A(D)$ pour des domains faiblement pseudoconvexes”, C.R. Acad. Sci., 285 (1975), 959–962 | MR