The Levi form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy
Izvestiya. Mathematics, Tome 19 (1982) no. 1, pp. 171-188
Cet article a éte moissonné depuis la source Math-Net.Ru
A description is given of the set of those boundary points of a domain of holomorphy $D\subset\mathbf C^2$ which have a neighborhood in which the boundary fibers into analytic curves. For domains with $C^1$-smooth boundary whose closure has a basis of Stein neighborhoods this set coincides with the complement of the Shilov boundary $S_{A(\overline D)}$. Bibliography: 5 titles.
@article{IM2_1982_19_1_a9,
author = {N. V. Shcherbina},
title = {The {Levi} form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy},
journal = {Izvestiya. Mathematics},
pages = {171--188},
year = {1982},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/}
}
TY - JOUR AU - N. V. Shcherbina TI - The Levi form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy JO - Izvestiya. Mathematics PY - 1982 SP - 171 EP - 188 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/ LA - en ID - IM2_1982_19_1_a9 ER -
N. V. Shcherbina. The Levi form for $C^1$-smooth hypersurfaces, and the complex structure on the boundary of domains of holomorphy. Izvestiya. Mathematics, Tome 19 (1982) no. 1, pp. 171-188. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a9/
[1] Sommer F., “Komplex-analytische Blättering reeler Mannigfaltigkeiten in $\mathbf{C}^m$”, Math. Ann., 136 (1958), 111–133 | DOI | MR | Zbl
[2] Rossi H., “The local maximum modulus principle”, Ann. Math., 72:1 (1960), 1–11 | DOI | MR | Zbl
[3] Bychkov S. N., “O geometricheskikh svoistvakh granitsy oblasti golomorfnosti”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 46–62 | MR | Zbl
[4] Pflug P., “Über polynomiale Funktionen auf Holomorphiegebieten”, Math. Z., 139 (1974), 133–139 | DOI | MR | Zbl
[5] Hakim M., Sibony N., “Frontiere de Shilov et spectre de $A(D)$ pour des domains faiblement pseudoconvexes”, C.R. Acad. Sci., 285 (1975), 959–962 | MR