A~local invariant of a~Riemannian manifold
Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 125-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the geometry of local invariants of a four-dimensional Riemannian manifold and prove that all irreducible components of the curvature tensor can be reconstructed from a local invariant up to proportionality. Bibliography: 14 titles.
@article{IM2_1982_19_1_a7,
     author = {A. N. Tyurin},
     title = {A~local invariant of {a~Riemannian} manifold},
     journal = {Izvestiya. Mathematics },
     pages = {125--149},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - A~local invariant of a~Riemannian manifold
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 125
EP  - 149
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/
LA  - en
ID  - IM2_1982_19_1_a7
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T A~local invariant of a~Riemannian manifold
%J Izvestiya. Mathematics 
%D 1982
%P 125-149
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/
%G en
%F IM2_1982_19_1_a7
A. N. Tyurin. A~local invariant of a~Riemannian manifold. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 125-149. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/

[1] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimentional Riemannian geometry”, Proc. Roy. Soc. London, Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl

[2] Barth W., “Moduli of vector bundles on the projective plane”, Invent. Math., 42 (1977), 63–93 | DOI | MR

[3] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 1969, no. 36, 75–109 | DOI | MR | Zbl

[4] Mumford D., “Stability of projective varieties”, Inst. des hautes etudes sc. Publ. Math., 1976, 1–89 | MR

[5] Mumford D., “Theta-characteristics of an algebraic curves”, Ann. Scient. Ec. Norm. Sup., 4:2 (1971), 181–191 | MR

[6] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl

[7] Shafarevich I. R., Pyatetskii-Shapiro I. I., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–571

[8] Singer J. M., Thorpe J. A., “The curvature of 4-dimention Einstein spaces”, Global Analysis, Princeton Univ., 1969, 355–365

[9] Cepp Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[10] Tyurin A. N., “O peresechenii kvadrik”, Uspekhi matem. nauk, 30:6 (1975), 51–100 | MR

[11] Tyurin A. N., “Geometriya osobennostei obschei kvadratichnoi formy”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1200–1227 | MR

[12] Shafarevich I. R. i dr., Algebraicheskie poverkhnosti, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, LXXV, 1965 | MR | Zbl

[13] Wall C. T. C., “Nets of quadrics and theta-characteristics of singular curves”, Philos. Trans. Roy. Soc. London. Ser. A, 289 (1978), 229–269 | DOI | MR | Zbl

[14] Wall C. T. C., “Singularities of nets of quadrics”, Compositio Math., 42:2 (1981), 187–212 | MR