A~local invariant of a~Riemannian manifold
Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 125-149

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the geometry of local invariants of a four-dimensional Riemannian manifold and prove that all irreducible components of the curvature tensor can be reconstructed from a local invariant up to proportionality. Bibliography: 14 titles.
@article{IM2_1982_19_1_a7,
     author = {A. N. Tyurin},
     title = {A~local invariant of {a~Riemannian} manifold},
     journal = {Izvestiya. Mathematics },
     pages = {125--149},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - A~local invariant of a~Riemannian manifold
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 125
EP  - 149
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/
LA  - en
ID  - IM2_1982_19_1_a7
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T A~local invariant of a~Riemannian manifold
%J Izvestiya. Mathematics 
%D 1982
%P 125-149
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/
%G en
%F IM2_1982_19_1_a7
A. N. Tyurin. A~local invariant of a~Riemannian manifold. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 125-149. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a7/