Class numbers in the genus of quadratic forms, and algebraic groups
Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 79-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the class numbers $c(f)$ of quadratic forms $f$ with coefficients in an algebraic number field $K$ are studied by the methods of the theory of algebraic groups. It is shown that if a form $f$ is positive definite, then for any natural number $r$ there exists a quadratic form $g_r$, $K$-equivalent to $f$, such that $c(g_r)$ is divisible by $r$. A generalization of this result to semisimple algebraic $K$-groups of compact type is also obtained. Bibliography: 21 titles.
@article{IM2_1982_19_1_a5,
     author = {A. S. Rapinchuk},
     title = {Class numbers in the genus of quadratic forms, and algebraic groups},
     journal = {Izvestiya. Mathematics },
     pages = {79--93},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a5/}
}
TY  - JOUR
AU  - A. S. Rapinchuk
TI  - Class numbers in the genus of quadratic forms, and algebraic groups
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 79
EP  - 93
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a5/
LA  - en
ID  - IM2_1982_19_1_a5
ER  - 
%0 Journal Article
%A A. S. Rapinchuk
%T Class numbers in the genus of quadratic forms, and algebraic groups
%J Izvestiya. Mathematics 
%D 1982
%P 79-93
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a5/
%G en
%F IM2_1982_19_1_a5
A. S. Rapinchuk. Class numbers in the genus of quadratic forms, and algebraic groups. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 79-93. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a5/

[1] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[2] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[3] Veil A., “Adeli i algebraicheskie gruppy”, Matematika, 8:4 (1964), 3–74

[4] Veil A., “O formule Zigelya v teorii klassicheskikh grupp”, Matematika, 13:6 (1969), 18–98

[5] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[6] Platonov V. P., “Problema silnoi approksimatsii i gipoteza Knezera–Titsa dlya algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 33:6 (1969), 1211–1219 | MR | Zbl

[7] Platonov V. P., “Dopolnenie k rabote “Problema silnoi approksimatsii i gipoteza Knezera–Titsa dlya algebraicheskikh grupp””, Izv. AN SSSR. Ser. matem., 34:4 (1970), 775–777 | MR | Zbl

[8] Platonov V. P., Bondarenko A. A., Rapinchuk A. S., “Chisla i gruppy klassov algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 43:3 (1979), 603–627 | MR | Zbl

[9] Platonov V. P., Bondarenko A. A., Rapinchuk A. S., “Chisla i gruppy klassov algebraicheskikh grupp, II”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 395–414 | MR | Zbl

[10] Rapinchuk A. S., “K gipoteze Platonova o rode v arifmeticheskikh gruppakh”, Dokl. AN BSSR, 25:2 (1981), 101–104 | MR | Zbl

[11] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[12] Borel A., “Some finiteness properties of adele groups over number fields”, Publ. Math. IHES, 1963, no. 16, 101–126 | MR | Zbl

[13] Eichler M., Quadratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1952 | MR

[14] Kneser M., “Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen”, Arch. Math., 7:5 (1956), 323–332 | DOI | MR | Zbl

[15] O'Meara O. T., Introduction to quadratic forms, Springer-Verlag, Berlin, Heidelberg, New York, 1963

[16] Pfeuffer H., “Einklassige Geschlechter totalpositiver quadratischer Formen in totalreelen algebraischen Zahlkorpern”, J. Number Theory, 3 (1971), 371–411 | DOI | MR | Zbl

[17] Siegel C. L., “Über die analytische Theorie der quadratischen Formen, I, II, III”, Ann. Math., 36 (1935), 527–606 ; 37 (1936), 230–263 ; 38 (1937), 212–291 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[18] Watson G. L., Integral quadratic forms, Cambridge Univ. Press, 1960 | MR

[19] Watson G. L., “One-class genera of positve ternary quadratic forms”, Mathematika, 22:1 (1975), 1–11 | MR | Zbl

[20] Watson G. L., “One-class genera of positive quadratic forms in at least five variables”, Acta Arithm., 26:3 (1975), 305–327 | MR

[21] Weil A., “Sur la théorie des formes quadratiques”, Colloq. Théorie des Groupes Algebriques (Bruxelles, 1962), Paris, 1962, 9–22 | MR | Zbl