Toroidal Fano 3-folds
Izvestiya. Mathematics, Tome 19 (1982) no. 1, pp. 13-25
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a regular classification of smooth Fano 3-folds is given. Bibliography: 4 titles.
@article{IM2_1982_19_1_a1,
author = {V. V. Batyrev},
title = {Toroidal {Fano} 3-folds},
journal = {Izvestiya. Mathematics},
pages = {13--25},
year = {1982},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a1/}
}
V. V. Batyrev. Toroidal Fano 3-folds. Izvestiya. Mathematics, Tome 19 (1982) no. 1, pp. 13-25. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a1/
[1] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, 1979, 59–157 | MR | Zbl
[2] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matem. nauk, 33:2 (1978), 85–133 | MR
[3] Demin I. V., “Trekhmernye mnogoobraziya Fano, predstavimye v vide rassloenii na pryamye”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 963–971 | MR | Zbl
[4] Oda T., Lecture on torus embeddings and applications, Tata Inst. Fund. Research, Lect. Notes, 58, Springer-Verlag, Berlin, 1978 | MR