Toroidal Fano 3-folds
Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 13-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a regular classification of smooth Fano 3-folds is given. Bibliography: 4 titles.
@article{IM2_1982_19_1_a1,
     author = {V. V. Batyrev},
     title = {Toroidal {Fano} 3-folds},
     journal = {Izvestiya. Mathematics },
     pages = {13--25},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a1/}
}
TY  - JOUR
AU  - V. V. Batyrev
TI  - Toroidal Fano 3-folds
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 13
EP  - 25
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a1/
LA  - en
ID  - IM2_1982_19_1_a1
ER  - 
%0 Journal Article
%A V. V. Batyrev
%T Toroidal Fano 3-folds
%J Izvestiya. Mathematics 
%D 1982
%P 13-25
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a1/
%G en
%F IM2_1982_19_1_a1
V. V. Batyrev. Toroidal Fano 3-folds. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 13-25. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a1/

[1] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, 1979, 59–157 | MR | Zbl

[2] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matem. nauk, 33:2 (1978), 85–133 | MR

[3] Demin I. V., “Trekhmernye mnogoobraziya Fano, predstavimye v vide rassloenii na pryamye”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 963–971 | MR | Zbl

[4] Oda T., Lecture on torus embeddings and applications, Tata Inst. Fund. Research, Lect. Notes, 58, Springer-Verlag, Berlin, 1978 | MR