On~the linear nature of the behavior of Iwasawa's~$\mu$ invariant
Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the behavior of Iwasawa's $\mu$ invariant is studied on the projective space of $\mathbf Z_l$-extensions of an algebraic number field. The author proves a theorem to the effect that the set of $\mathbf Z_l$-extensions for which the values of $\mu$ are not less than an arbitrary constant forms a linear projective variety. Bibliography: 9 titles.
@article{IM2_1982_19_1_a0,
     author = {V. A. Babaitsev},
     title = {On~the linear nature of the behavior of {Iwasawa's~}$\mu$ invariant},
     journal = {Izvestiya. Mathematics },
     pages = {1--12},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a0/}
}
TY  - JOUR
AU  - V. A. Babaitsev
TI  - On~the linear nature of the behavior of Iwasawa's~$\mu$ invariant
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 1
EP  - 12
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a0/
LA  - en
ID  - IM2_1982_19_1_a0
ER  - 
%0 Journal Article
%A V. A. Babaitsev
%T On~the linear nature of the behavior of Iwasawa's~$\mu$ invariant
%J Izvestiya. Mathematics 
%D 1982
%P 1-12
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a0/
%G en
%F IM2_1982_19_1_a0
V. A. Babaitsev. On~the linear nature of the behavior of Iwasawa's~$\mu$ invariant. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a0/

[1] Greenberg R., “The Iwasawa invariants of $\Gamma$-extensions of a fixed number field”, Amer. J. Math., 95:1 (1973), 204–214 | DOI | MR | Zbl

[2] Iwasawa K., “On the $\mu$-invariants of $\mathbf{Z}_l$-extensions”, Number theory, algebraic geometry and commutative algebra in honour Akizuki, Tokyo, 1973, 1–11 | MR | Zbl

[3] Kuzmin L. V., “Kogomologicheskaya razmernost nekotorykh grupp Galua”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 487–495 | MR

[4] Greenberg R., “On the structure of certain Galois groups”, Invent. Math., 47:1 (1978), 85–99 | DOI | MR | Zbl

[5] Babaitsev V. A., “O nekotorykh voprosakh teorii $\Gamma$-rasshirenii polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 477–487 | MR

[6] Babaitsev V. A., “O nekotorykh voprosakh teorii $\Gamma$-rasshirenii polei algebraicheskikh chisel, II”, Izv. AN SSSR. Ser. matem., 40:4 (1976), 715–726 | MR

[7] Babaitsev V. A., “Ob ogranichennosti invarianta $\mu$ Ivasavy”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 3–23 | MR

[8] Ferrero V., Washington L. S., “The Iwasawa invariant $\mu_p$ vanishes for abelian fields”, Ann. Math., 109 (1979), 377–395 | DOI | MR | Zbl

[9] Burbaki N., Algebra: moduli, koltsa, formy, Nauka, M., 1966 | MR