A~condition of Jacobi type for a~quadratic form to be nonnegative on a~finite-faced cone
Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 525-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the problem of nonnegativity and positive definiteness of a Legendre quadratic form on a family of cones in Hilbert space that are the intersection of a fixed finite-faced cone with a monotonically increasing family of subspaces. This problem arises in the investigation to second order of an extremal in the Lagrange–Mayer–Bolza problem of classical variational calculus in the presence of finitely many additional constraints in the form of end and integral inequalities when there is only one set of Lagrange multipliers for the given extremal. It is shown that a complete answer can be given in terms of solutions of the corresponding Euler–Jacobi equation. Bibliography: 5 titles.
@article{IM2_1982_18_3_a5,
     author = {A. V. Dmitruk},
     title = {A~condition of {Jacobi} type for a~quadratic form to be nonnegative on a~finite-faced cone},
     journal = {Izvestiya. Mathematics },
     pages = {525--535},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a5/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - A~condition of Jacobi type for a~quadratic form to be nonnegative on a~finite-faced cone
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 525
EP  - 535
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a5/
LA  - en
ID  - IM2_1982_18_3_a5
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T A~condition of Jacobi type for a~quadratic form to be nonnegative on a~finite-faced cone
%J Izvestiya. Mathematics 
%D 1982
%P 525-535
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a5/
%G en
%F IM2_1982_18_3_a5
A. V. Dmitruk. A~condition of Jacobi type for a~quadratic form to be nonnegative on a~finite-faced cone. Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 525-535. http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a5/

[1] Hazard C., “Index theorems for the problem of Bolza in calculus of variations”, Contributions to the calculus of variation's, Univ. of Chicago Press, 1938–41

[2] Hestenes M. R., “Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations”, Pacific J. of Math., 1:4 (1951), 525–580 | MR

[3] Hoffman A. J., “On approximate solutions of systems of linear inequalities”, J. of Research National Bureau of Standards, 49:4 (1952) | MR

[4] Levitin E. S., Milyutin A. A., Osmolovskii N. P., “Usloviya vysshikh poryadkov lokalnogo minimuma v zadachakh s ogranicheniyami”, Uspekhi matem. nauk, 33:6 (1978), 85–148 | MR

[5] Dmitruk A. V., “Ob uravnenii Eilera–Yakobi v variatsionnom ischislenii”, Matem. zametki, 20:6 (1976), 847–858 | MR | Zbl