On stochastic differential equations with boundary conditions in a~half-plane
Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 423-437.

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence theorems are proved for solutions of stochastic differential equations with boundary conditions in a Euclidean half-space. The existence of Markov processes with given characteristics in a half-space is deduced from these theorems. The case of discontinuous coefficients is included. The usual nondegeneracy condition for the normal component of diffusion near the boundary is replaced in part by the nondegeneracy of the jump component. Bibliography: 15 titles.
@article{IM2_1982_18_3_a1,
     author = {S. V. Anulova},
     title = {On stochastic differential equations with boundary conditions in a~half-plane},
     journal = {Izvestiya. Mathematics },
     pages = {423--437},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a1/}
}
TY  - JOUR
AU  - S. V. Anulova
TI  - On stochastic differential equations with boundary conditions in a~half-plane
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 423
EP  - 437
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a1/
LA  - en
ID  - IM2_1982_18_3_a1
ER  - 
%0 Journal Article
%A S. V. Anulova
%T On stochastic differential equations with boundary conditions in a~half-plane
%J Izvestiya. Mathematics 
%D 1982
%P 423-437
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a1/
%G en
%F IM2_1982_18_3_a1
S. V. Anulova. On stochastic differential equations with boundary conditions in a~half-plane. Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 423-437. http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a1/

[1] Anulova S. V., “O protsessakh s proizvodyaschim operatorom Levi v poluprostranstve”, Izv. AN SSSR. Ser. matem., 42:4 (1978), 708–750 | MR | Zbl

[2] Anulova S. V., Postroenie markovskikh protsessov, otvechayuschikh obschim operatoram Levi, Kandidatskaya dissertatsiya, MGU, 1978

[3] Anulova S., Pragarauskas G., “O slabykh markovskikh resheniyakh stokhasticheskikh uravnenii”, Litovskii matem. sbornik, XVII:2 (1977), 5–26 | MR

[4] Gikhman I. I., Skorokhod L. V., Teoriya sluchainykh protsessov, t. III, Nauka, M., 1975

[5] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[6] Krylov N. V., “O vydelenii markovskogo protsessa iz markovskoi sistemy protsessov”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 691–708 | MR | Zbl

[7] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[8] Makkin G., Stokhasticheskie integraly, Mir, M., 1972 | MR

[9] Meier P. A., Veroyatnost i potentsialy, Mir, M., 1973

[10] Mikulyavichyus R., “O suschestvovanii reshenii problemy martingalov”, Litovskii matem. sbornik, XVII:4 (1977), 149–168

[11] Mikulyavichyus R., “O edinstvennosti reshenii problemy martingalov”, Litovskii matem. sbornik, XVIII:2 (1978), 63–73

[12] Nakao S., “On the existence of solutions of stochastic differential equations with boundary conditions”, J. Math. Kyoto Univ., 12:1 (1972), 151–178 | MR | Zbl

[13] El Caroui N., “Processus de reflection dans $R^n$”, Lecture Notes in Mathematics, 465, 1975, 534–554

[14] Stroock D. W., Varadhan S. R. S., “Diffusion processes with boundary conditions”, Comm. Pure Appl. Math., XXIV:2 (1971), 147–225 | DOI | MR

[15] Watanabe S., “On the stochastic differential equations for multidimensional diffusion processes with boundary conditions”, J. Math. Kyoto Univ., 11:1 (1971), 168–180; 3, 545–551 | Zbl