Constants of derivations of prime rings
Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 381-401

Voir la notice de l'article provenant de la source Math-Net.Ru

A Galois correspondence theorem is proved for any finite-dimensional Lie $\partial$-algebra of outer derivations of a prime ring of positive characteristic. A theorem is proved on the existence of a locally finite ideal, in the sense of Chirshov, over the ring of constants of such a Lie $\partial$-algebra. Extension and rigidity theorems are also obtained. Bibliography: 14 titles.
@article{IM2_1982_18_2_a5,
     author = {V. K. Kharchenko},
     title = {Constants of derivations of prime rings},
     journal = {Izvestiya. Mathematics },
     pages = {381--401},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a5/}
}
TY  - JOUR
AU  - V. K. Kharchenko
TI  - Constants of derivations of prime rings
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 381
EP  - 401
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a5/
LA  - en
ID  - IM2_1982_18_2_a5
ER  - 
%0 Journal Article
%A V. K. Kharchenko
%T Constants of derivations of prime rings
%J Izvestiya. Mathematics 
%D 1982
%P 381-401
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a5/
%G en
%F IM2_1982_18_2_a5
V. K. Kharchenko. Constants of derivations of prime rings. Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 381-401. http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a5/