Constants of derivations of prime rings
Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 381-401
Voir la notice de l'article provenant de la source Math-Net.Ru
A Galois correspondence theorem is proved for any finite-dimensional Lie $\partial$-algebra of outer derivations of a prime ring of positive characteristic. A theorem is proved on the existence of a locally finite ideal, in the sense of Chirshov, over the ring of constants of such a Lie $\partial$-algebra. Extension and rigidity theorems are also obtained.
Bibliography: 14 titles.
@article{IM2_1982_18_2_a5,
author = {V. K. Kharchenko},
title = {Constants of derivations of prime rings},
journal = {Izvestiya. Mathematics },
pages = {381--401},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a5/}
}
V. K. Kharchenko. Constants of derivations of prime rings. Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 381-401. http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a5/