On~algebraic cycles on surfaces and Abelian varieties
Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 349-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a proof of the Tate conjecture on algebraic cycles on surfaces with strongly degenerate reduction over function fields and the Hodge conjecture on cycles on simple Abelian varieties of the first and second types according to Albert's classification (under certain restrictions on the dimension of the variety and the center of its ring of endomorphisms). Bibliography: 27 titles.
@article{IM2_1982_18_2_a4,
     author = {S. G. Tankeev},
     title = {On~algebraic cycles on surfaces and {Abelian} varieties},
     journal = {Izvestiya. Mathematics },
     pages = {349--380},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On~algebraic cycles on surfaces and Abelian varieties
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 349
EP  - 380
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a4/
LA  - en
ID  - IM2_1982_18_2_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On~algebraic cycles on surfaces and Abelian varieties
%J Izvestiya. Mathematics 
%D 1982
%P 349-380
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a4/
%G en
%F IM2_1982_18_2_a4
S. G. Tankeev. On~algebraic cycles on surfaces and Abelian varieties. Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 349-380. http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a4/

[1] Artin M., Grothendieck A., Verdier J.-L., Théorie des topos et cohomologie étale des schémas, (SGA-4), tome 3, Lect. Notes Math., 305, Springer-Verlag, 1973 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 | MR | Zbl

[3] Delin P., “Teoriya Khodzha II”, Matematika, 17:5 (1973), 3–56 | MR

[4] Delogne P., “Variétés abéliennes ordinaires sur un corps fini”, Invent. Math., 8:3 (1969), 238–243 | DOI | MR

[5] Griffiths Ph., “Periods of integrals on algebraic manifolds, III”, Publ. Math. IHES, 38 (1970), 125–180 | MR | Zbl

[6] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proc. Inter. Cong., v. 1, Camb., Mass., 1950, 182–192 | MR

[7] Zarkhin Yu. G., “Abelevy mnogoobraziya v kharakteristike $p$”, Matem. zametki, 19:3 (1976), 393–400 | MR | Zbl

[8] Zarkhin Yu. G., “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $SL_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[9] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal embeddings, I, Lect. Notes Math., 339, Springer-Verlag, 1973 | MR | Zbl

[10] Kulikov V. S., “Vyrozhdeniya K3 poverkhnostei i poverkhnostei Enrikvesa”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1008–1042 | MR | Zbl

[11] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[12] Mumford D., “Families of abelian varieties. Algebraic groups and discontinuous subgroups”, Proc. Symp. in Pure Math., 9 (1966), 347–352 | MR

[13] Mumford D., “A note on Shimura's paper “Discontinuous Groups and Abelian Varieties””, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[14] Pyatetskii-Shapiro I. I., “Vzaimootnosheniya mezhdu gipotezami Teita i Khodzha dlya abelevykh mnogoobrazii”, Matem. sb., 85(127):4(8) (1971), 610–620

[15] Ribet K. A., “Galois action on division points of abelian varieties with real multiplications”, Amer. J. Math., 98:3 (1976), 751–804 | DOI | MR | Zbl

[16] Satake I., “Holomorphic imbeddings of symmetric domains into a Siegel space”, Amer. J. Math., 87:2 (1965), 425–461 | DOI | MR | Zbl

[17] Satake I., “Symplectic representations of algebraic groups satisfying a certain analyticity condition”, Acta Math., 117 (1967), 215–279 | DOI | MR | Zbl

[18] Cepp Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[19] Serr Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973 | Zbl

[20] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[21] Serr Zh.-P., Teit Dzh., “Khoroshaya reduktsiya abelevykh mnogoobrazii”, Matematika, 15:5 (1971), 140–165 | Zbl

[22] Shimura G., Tanyiama Y., Complex multiplication of Abelian varieties and its applications to number theory, Tokyo, 1961

[23] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, New York, 1965, 93–110 | MR | Zbl

[24] Teit Dzh., “Endomorfizmy abelevykh mnogoobrazii nad konechnymi polyami”, Matematika, 12:6 (1968), 31–40

[25] Teit Dzh., “Klassy izogenii abelevykh mnogoobrazii nad konechnymi polyami”, Matematika, 14:6 (1970), 129–137

[26] Tankeev S. G., “O gomomorfizmakh abelevykh skhem, I, II”, Izv. AN SSSR. Ser. matem., 40:4 (1976), 774–790 ; 41:6 (1977), 1231–1251 | MR | Zbl | MR | Zbl

[27] Tankeev S. G., “Ob algebraicheskikh tsiklakh na abelevykh mnogoobraziyakh, I, II”, Izv. AN SSSR. Ser. matem., 42:3 (1978), 667–696 ; 43:2 (1979), 418–429 | MR | Zbl | MR | Zbl