Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives
Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 227-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact values of linear widths (diameters), Kolmogorov widths and Gel'fand widths, in $L_p$-spaces are found for some classes of functions, using a convex majorant of the modulus of continuity of a function or its derivative. Precise constants in the Jackson type theorems on approximation of continuous and differentiable functions are also found. These results are interpreted from the point of view of problems of optimal coding and optimal recovery of functions and their derivatives. Bibliography: 23 titles.
@article{IM2_1982_18_2_a1,
     author = {N. P. Korneichuk},
     title = {Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {227--247},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a1/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 227
EP  - 247
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a1/
LA  - en
ID  - IM2_1982_18_2_a1
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives
%J Izvestiya. Mathematics 
%D 1982
%P 227-247
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a1/
%G en
%F IM2_1982_18_2_a1
N. P. Korneichuk. Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives. Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 227-247. http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a1/

[1] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[2] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[3] Makovoz Yu. I., “Poperechniki sobolevskikh klassov i splainy, naimenee uklonyayuschiesya ot nulya”, Matem. zametki, 26:5 (1979), 805–812 | MR | Zbl

[4] Ligun L. A., “O poperechnikakh nekotorykh klassov differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 27:1 (1980), 61–75 | MR | Zbl

[5] Korneichuk N. P., “Ekstremalnye znacheniya funktsionalov i nailuchshee priblizhenie na klassakh periodicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 35:1 (1975), 93–124

[6] Ruban V. I., “Chetnye poperechniki klassov $W^r H_\omega$ v prostranstve $C_{2\pi}$”, Matem. zametki, 15:3 (1974), 387–392 | MR | Zbl

[7] Motornyi V. P., Ruban V. I., “Poperechniki nekotorykh klassov differentsiruemykh periodicheskikh funktsii v prostranstve $L$”, Matem. zametki, 17:4 (1975), 531–543 | MR | Zbl

[8] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi matem. nauk, XV:3(93) (1960), 81–120

[9] Makovoz Yu. I., Teoremy o nailuchshem priblizhenii i poperechniki mnozhestv v banakhovykh prostranstvakh, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, Minsk, 1969

[10] Korneichuk N. P., “O poperechnikakh klassov nepreryvnykh funktsii v prostranstve $L_p$”, Matem. zametki, 10:5 (1971), 493–500

[11] Borsuk K., “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–191

[12] Korneichuk N. P., “Tochnye znacheniya norm differentsiruemykh periodicheskikh funktsii v metrike $L$”, Matem. zametki, 2:6 (1967), 569–576

[13] Storchai V. F., “Tochnye otsenki dlya norm differentsiruemykh periodicheskikh funktsii v metrike $L_2$”, Ukr. matem. zhurn., 25:6 (1973), 835–840

[14] Storchai V. F., “O tochnykh otsenkakh norm differentsiruemykh periodicheskikh funktsii”, Issled. po sovrem. problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, Dnepropetrovsk, 1976, 50–54

[15] Malozemov V. N., “K poligonalnoi interpolyatsii”, Matem. zametki, 1:5 (1967), 537–540 | MR | Zbl

[16] Malozemov V. N., “Ob otklonenii lomanykh”, Vestn. Leningr. un-ta, 7:2 (1966), 150–153 | MR | Zbl

[17] Loginov A. S., “Priblizhenie nepreryvnykh funktsii lomanymi”, Matem. zametki, 6:2 (1969), 149–160 | MR | Zbl

[18] Storchai V. F., “Ob otklonenii lomanykh v metrike $L_p$”, Matem. zametki, 5:1 (1969), 31–37

[19] Khardi G., Littlvud Dzh., Polia G., Neravenstva, IL, M., 1948

[20] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[21] Korneichuk N. P., “Nailuchshie kubaturnye formuly dlya nekotorykh klassov funktsii mnogikh peremennykh”, Matem. zametki, 3:5 (1968), 565–576

[22] Ruban V. I., Poperechniki nekotorykh mnozhestv v funktsionalnykh prostranstvakh, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, Dnepropetrovsk, 1974

[23] Korneichuk N. P., “Poperechniki v $L_p$ klassov nepreryvnykh i differentsiruemykh funktsii i optimalnoe vosstanovlenie funktsii i ikh proizvodnykh”, Dokl. AN SSSR, 244:6 (1979), 1317–1320 | MR