On~minimal volumes of topological globally minimal surfaces in cobordisms
Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 163-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper obtains a universal lower bound on the volumes of globally minimal surfaces of arbitrary codimension in cobordisms. The bound is exact in the sense that there are abundant series of minimal surfaces for which the bound becomes an equality. Bibliography: 11 titles.
@article{IM2_1982_18_1_a8,
     author = {A. T. Fomenko},
     title = {On~minimal volumes of topological globally minimal surfaces in cobordisms},
     journal = {Izvestiya. Mathematics },
     pages = {163--183},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a8/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - On~minimal volumes of topological globally minimal surfaces in cobordisms
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 163
EP  - 183
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a8/
LA  - en
ID  - IM2_1982_18_1_a8
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T On~minimal volumes of topological globally minimal surfaces in cobordisms
%J Izvestiya. Mathematics 
%D 1982
%P 163-183
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a8/
%G en
%F IM2_1982_18_1_a8
A. T. Fomenko. On~minimal volumes of topological globally minimal surfaces in cobordisms. Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 163-183. http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a8/

[1] Fomenko A. T., “Mnogomernye zadachi Plato na rimanovykh mnogoobraziyakh, I”, Tr. seminara po vekt. i tenz. analizu, 17, no. 3–176, MGU, 1974 | MR

[2] Fomenko A. T., “Mnogomernye zadachi Plato na rimanovykh mnogoobraziyakh i ekstraordinarnye teorii gomologii i kogomologii, II”, Tr. seminara po vekt. i tenz. analizu, 18, MGU, 1978, 4–9 | MR

[3] Fomenko A. T., “Mnogomernaya zadacha Plato v rimanovykh mnogoobraziyakh”, Matem. sb., 89(131):3 (1972), 475–520 | MR

[4] Fomenko A. T., “Minimalnye kompakty v rimanovykh mnogoobraziyakh i gipoteza Raifenberga”, Izv. AN SSSR. Ser. matem., 36 (1972), 1049–1080 | MR

[5] Griffits F., King Dzh., Teoriya Nevanlinny i golomorfnye otobrazheniya algebraicheskikh mnogoobrazii, Mir, M., 1976 | MR

[6] Katsnelson V. E., Ronkin L. I., “O minimalnom ob'eme analiticheskogo mnozhestva”, Sib. matem. zh., 15:3 (1974), 516–528 | MR

[7] Ronkin L. I., “O diskretnykh mnozhestvakh edinstvennosti dlya tselykh funktsii eksponentsialnogo tipa mnogikh peremennykh”, Sib. matem. zh., 19:1 (1978), 142–152 | MR | Zbl

[8] Federer H., Geometric measure theory, Springer-Verlag, Berlin, Heidelberg, New-York, 1969 | MR

[9] Fomenko A. T., “Geometricheskie variatsionnye zadachi”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, I, M., 1973, 39–60 | MR

[10] Milnor Dzh., Teorema ob $h$-kobordizme, Mir, M., 1969 | MR

[11] Zulanke R., Vintgen P., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975