Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a~slender cylinder
Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 145-161
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet problem is investigated for the Laplace and Helmholtz equations in the exterior of a surface in $\mathbf R^3$ which is a right circular cylinder outside a sphere. Asymptotic expansions of the solutions are constructed; the small parameter is the maximal diameter of the cross-section of the cylinder.
Bibliography: 8 titles.
@article{IM2_1982_18_1_a7,
author = {M. V. Fedoryuk},
title = {Asymptotics of the solution of the {Dirichlet} problem for the {Laplace} and {Helmholtz} equations in the exterior of a~slender cylinder},
journal = {Izvestiya. Mathematics },
pages = {145--161},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a7/}
}
TY - JOUR AU - M. V. Fedoryuk TI - Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a~slender cylinder JO - Izvestiya. Mathematics PY - 1982 SP - 145 EP - 161 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a7/ LA - en ID - IM2_1982_18_1_a7 ER -
%0 Journal Article %A M. V. Fedoryuk %T Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a~slender cylinder %J Izvestiya. Mathematics %D 1982 %P 145-161 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a7/ %G en %F IM2_1982_18_1_a7
M. V. Fedoryuk. Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a~slender cylinder. Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 145-161. http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a7/