The degree of rational approximation of functions and their differentiability
Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 595-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $R_n(f,E)$ the least uniform deviation of the function $f(x_1,\dots,x_m)$, defined in a subset $E$ of $m$-dimensional Euclidean space, from the rational functions $R_n(x_1,\dots,x_m)$ of degree $\leqslant n$. It is shown that if $\sum R_n(f,E)\infty$, then, a.e. on $E$, $f(x_1,\dots,x_m)$ has a total differential. The case $m=1$ was previously treated by E. P Dolzhenko. Bibliography: 9 titles.
@article{IM2_1981_17_3_a6,
     author = {E. A. Sevast'yanov},
     title = {The degree of rational approximation of functions and their differentiability},
     journal = {Izvestiya. Mathematics },
     pages = {595--600},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a6/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - The degree of rational approximation of functions and their differentiability
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 595
EP  - 600
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a6/
LA  - en
ID  - IM2_1981_17_3_a6
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T The degree of rational approximation of functions and their differentiability
%J Izvestiya. Mathematics 
%D 1981
%P 595-600
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a6/
%G en
%F IM2_1981_17_3_a6
E. A. Sevast'yanov. The degree of rational approximation of functions and their differentiability. Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 595-600. http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a6/

[1] Gonchar A. A., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, Dokl. AN SSSR, 100:2 (1955), 205–208 | Zbl

[2] Dolzhenko E. P., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56 (1962), 403–432 | Zbl

[3] Dolzhenko E. P., “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh i algebraicheskikh funktsii. Prilozheniya”, Anal. Math., 4 (1978), 247–268 | DOI | MR

[4] Dolzhenko E. P., “O svyazi mezhdu svoistvami funktsii i skorostyu ikh priblizheniya ratsionalnymi funktsiyami so svobodnymi polyusami i polinomami”, Problemy razvitiya prikladnykh matematicheskikh issledovanii, Tezisy dokladov, ch. 2 (IV respublikanskaya konferentsiya matematikov Belorussii), Belorusskii gos. universitet, Minsk, 1975, 112–120

[5] Dolzhenko E. P., “O svoistvakh funktsii neskolkikh peremennykh, dostatochno khorosho priblizhaemykh ratsionalnymi drobyami”, Izv. AN SSSR. Ser. matem., 26 (1962), 641–652 | Zbl

[6] Saks S., Teoriya integrala, IL, M., 1949

[7] Petrovskii I. G., Oleinik O. A., “O topologii deistvitelnykh algebraicheskikh poverkhnostei”, Izv. AN SSSR. Ser. matem., 13 (1949), 389–402 | MR | Zbl

[8] Dolzhenko E. P., “Otsenki proizvodnykh ratsionalnykh funktsii”, Izv. AN SSSR. Ser. matem., 27 (1963), 9–28

[9] Sevastyanov E. A., “Ratsionalnaya approksimatsiya i absolyutnaya skhodimost ryadov Fure”, Matem. sb., 107(149):2(10) (1978), 227–244 | MR