Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus
Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 567-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the connections among three algebras are discussed: the algebra of Fourier transforms of finite Borel measures on $\mathbf R^m$, the algebra $A$ of absolutely convergent Fourier integrals, and the algebra of functions which generate a bounded multiplier sequence. Necessary and sufficient conditions for membership in $A$ are given, a Bernstein–Rogozinskii type of summation method for multiple Fourier series is investigated, and a comparison principle is formulated for various methods of summation of Fourier series according to their approximation properties. In addition, in connection with the well-known theorem of Jackson and its converse, various moduli of smoothness are introduced and studied. Bibliography: 33 titles.
@article{IM2_1981_17_3_a5,
     author = {R. M. Trigub},
     title = {Absolute convergence of {Fourier} integrals, summability of {Fourier} series, and polynomial approximation of functions on the torus},
     journal = {Izvestiya. Mathematics },
     pages = {567--593},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a5/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 567
EP  - 593
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a5/
LA  - en
ID  - IM2_1981_17_3_a5
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus
%J Izvestiya. Mathematics 
%D 1981
%P 567-593
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a5/
%G en
%F IM2_1981_17_3_a5
R. M. Trigub. Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus. Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 567-593. http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a5/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[3] Beurling A., “On the spectral synthesis of bounded functions”, Acta Math., 81:3–4 (1949), 225–255 | DOI | MR

[4] Trigub R. M., “Lineinye metody summirovaniya i absolyutnaya skhodimost ryadov Fure”, Izv. AN SSSR. Ser. matem., 32 (1968), 24–49 | MR | Zbl

[5] Trigub R. M., “Lineinye metody summirovaniya prostykh i kratnykh ryadov Fure i ikh approksimativnye svoistva”, Tr. mezhdunar. konferentsii po teorii priblizheniya funktsii, Nauka, M., 1977, 383–390 | MR

[6] Trigub R. M., “Summiruemost kratnykh ryadov Fure i priblizhenie polinomami funktsii na tore”, Dokl. AN SSSR, 240:2 (1978), 276–279 | MR

[7] Zigmund A., Trigonometricheskie ryady, t. I,II, Mir, M., 1965 | MR

[8] Butzer P. L., Nessel R. J., Fourier Analysis and Approximation, v. 1, Birkhäuser, Basel and Acad. Press, New York, 1971 | MR | Zbl

[9] Kakhan Zh.-P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[10] Vitushkin A. G., O mnogomernykh variatsiyakh, Gos. izd-vo tekh.-teoret. lit-ry, M., 1955

[11] Bokhner S., Lektsii ob integralakh Fure, Fizmatgiz, M., 1962

[12] Trigub R. M., “Integriruemost i asimptoticheskoe povedenie preobrazovaniya Fure radialnoi funktsii”, Metricheskie voprosy teorii funktsii i otobrazhenii, Kiev, 1977, 142–163 | MR

[13] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[14] Musielak J., “Some Conditions Sufficient for the Absolute Convergence of Multiple Fourier Series”, Bull. Acad. Polon., 5:3 (1957), 251–254 | MR | Zbl

[15] Timan M. F., “Ob absolyutnoi skhodimosti kratnykh ryadov Fure”, Dokl. AN SSSR, 137:5 (1961), 1074–1077 | MR

[16] Shapiro H. S., Topics in approximation theory (With appendices by Jan Boman and Torbjörn Hedberg), Lecture Notes in Math., 187, Springer-Verlag, Berlin, 1971 | MR | Zbl

[17] Trigub R. M., “Summiruemost kratnykh ryadov Fure”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, vyp. 2, Yaroslavl, 1978

[18] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | Zbl

[19] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[20] Alimov Sh. A., Ilin V. A., Nikishin E. M., “Voprosy skhodimosti kratnykh trigonometricheskikh ryadov i spektralnykh razlozhenii”, Uspekhi matem. nauk, 31:6 (1976), 28–83 | MR | Zbl

[21] Chandrasekharan K., Minakshisundaram S., “Seme results on double Fourier series”, Duke Math. J., 14:3 (1947), 731–753 | DOI | MR | Zbl

[22] Ilin V. A., “Problemy lokalizatsii i skhodimosti dlya ryadov Fure po fundamentalnym sistemam funktsii operatora Laplasa”, Uspekhi matem. nauk, 23:2 (1968), 61–120 | MR

[23] Babenko K. I., O skhodimosti v srednem kratnykh ryadov Fure i asimptotike yadra Dirikhle sfericheskikh srednikh, preprint No 52, IPM AN SSSR, M., 1971

[24] Hardy G. H., “The second theorem of consistency for summable series”, Proc. Lond. Math. Soc., 15 (1916), 72–88 | DOI | Zbl

[25] Boman J., Shapiro H. S., “Comparison theorems for a generalized modulus of continuity”, Ark. mat., 9 (1971), 91–116 | DOI | MR | Zbl

[26] Nosenko Yu. L., “O sravnenii lineinykh metodov summirovaniya dvoinykh ryadov Fure”, Metricheskie voprosy teorii funktsii i otobrazhenii, Kiev, 1975, 89–101 | Zbl

[27] Belinskii E. S., “Priblizhenie srednimi Bokhnera–Rissa i sfericheskii modul nepreryvnosti”, Dokl. AN USSR, ser. A, 1975, no. 7, 579–581 | MR | Zbl

[28] Trebels W., Multipliers for $(C, \alpha)$-Bounded Fourier Expansions in Banach Spaces and Approximation Theory, Springer, 1973 | MR

[29] Inozemtsev O. I., “Obobschenie sfericheskogo modulya nepreryvnosti”, Ukr. matem. zh., 11:2 (1959), 155–162

[30] Bugrov Ya. S., “Priblizhenie trigonometricheskimi polinomami klassov funktsii, opredelyaemykh poligarmonicheskim operatorom”, Uspekhi matem. nauk, 13:2 (1958), 149–156 | MR | Zbl

[31] Mityagin B. S., “Priblizhenie funktsii v $C$ i $L_p$ na tore”, Matem. sb., 58(100):4 (1962), 397–414 | Zbl

[32] Shapiro H. S., “Approximation by trigonometric polynomials periodic functions of several variables”, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968), Birkhäuser, Basel, 1969, 203–217 | MR

[33] Ponomarenko V. G., Timan M. F., “Konstruktivnye kharakteristiki nekotorykh klassov periodicheskikh funktsii mnogikh peremennykh”, Sib. matem. zh., 11:5 (1970), 1107–1120 | MR | Zbl