@article{IM2_1981_17_3_a4,
author = {A. S. Tikhomirov},
title = {The intermediate {Jacobian} of the double covering of $P^3$ branched at a~quartic},
journal = {Izvestiya. Mathematics},
pages = {523--566},
year = {1981},
volume = {17},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a4/}
}
A. S. Tikhomirov. The intermediate Jacobian of the double covering of $P^3$ branched at a quartic. Izvestiya. Mathematics, Tome 17 (1981) no. 3, pp. 523-566. http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a4/
[1] Clemens C. H., Griffiths P. A., “The intermediate Jacobian of the cubic threefold”, Ann. Math., 95:2 (1972), 281–356 | DOI | MR | Zbl
[2] Tyurin A. N., “Srednii yakobian trekhmernykh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, VINITI AN SSSR, M., 1979, 5–57 | MR
[3] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl
[4] Tikhomirov A. S., “Geometriya poverkhnosti Fano dvoinogo prostranstva s vetvleniem v kvartike”, Izv. AN SSSR. Ser. matem., 44 (1980), 415–442 | MR | Zbl
[5] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41 (1977)), 516–562 | MR | Zbl
[6] Welters G. E., The Fano surface of lines on a double $P^3$ with 4th order discriminant locus. I, preprint, 1979
[7] Semple J. G., Roth L., Introduction to algebraic geometry, Oxford, 1949 | MR
[8] Hartshorne R., Algebraic geometry, New York, 1977 | MR
[9] Griffiths P. A., Harris J., Principles of algebraic geometry, New York, 1977 | MR
[10] Roth L., Algebraic threefolds, with special regard to problems of rationality, Berlin, Gottingen, Heidelberg, 1955 | MR
[11] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, VINITI AN SSSR, M., 1979, 59–157 | MR
[12] Bloch S., Murre J. P., On the Chow group of certain types of Fano threefolds, preprint, 1978 | MR
[13] Andreotti A., “On a theorem of Torelli”, Amer. J. Math., 80 (1958), 801–828 | DOI | MR | Zbl