The intermediate Jacobian of the double covering of $P^3$ branched at a~quartic
Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 523-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the intermediate Jacobian $J_3(X)$ of a double covering $X$ of $P^3$ branched at a smooth quartic which does not contain projective lines. We prove an analogue of the Riemann theorem for the Poincare's divisor of the intermediate Jacobian $J_3(X)$, the global Torelli theorem for $X$, and the nonrationality of $X$. Bibliography: 13 titles.
@article{IM2_1981_17_3_a4,
     author = {A. S. Tikhomirov},
     title = {The intermediate {Jacobian} of the double covering of $P^3$ branched at a~quartic},
     journal = {Izvestiya. Mathematics },
     pages = {523--566},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a4/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - The intermediate Jacobian of the double covering of $P^3$ branched at a~quartic
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 523
EP  - 566
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a4/
LA  - en
ID  - IM2_1981_17_3_a4
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T The intermediate Jacobian of the double covering of $P^3$ branched at a~quartic
%J Izvestiya. Mathematics 
%D 1981
%P 523-566
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a4/
%G en
%F IM2_1981_17_3_a4
A. S. Tikhomirov. The intermediate Jacobian of the double covering of $P^3$ branched at a~quartic. Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 523-566. http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a4/

[1] Clemens C. H., Griffiths P. A., “The intermediate Jacobian of the cubic threefold”, Ann. Math., 95:2 (1972), 281–356 | DOI | MR | Zbl

[2] Tyurin A. N., “Srednii yakobian trekhmernykh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, VINITI AN SSSR, M., 1979, 5–57 | MR

[3] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl

[4] Tikhomirov A. S., “Geometriya poverkhnosti Fano dvoinogo prostranstva s vetvleniem v kvartike”, Izv. AN SSSR. Ser. matem., 44 (1980), 415–442 | MR | Zbl

[5] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41 (1977)), 516–562 | MR | Zbl

[6] Welters G. E., The Fano surface of lines on a double $P^3$ with 4th order discriminant locus. I, preprint, 1979

[7] Semple J. G., Roth L., Introduction to algebraic geometry, Oxford, 1949 | MR

[8] Hartshorne R., Algebraic geometry, New York, 1977 | MR

[9] Griffiths P. A., Harris J., Principles of algebraic geometry, New York, 1977 | MR

[10] Roth L., Algebraic threefolds, with special regard to problems of rationality, Berlin, Gottingen, Heidelberg, 1955 | MR

[11] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, VINITI AN SSSR, M., 1979, 59–157 | MR

[12] Bloch S., Murre J. P., On the Chow group of certain types of Fano threefolds, preprint, 1978 | MR

[13] Andreotti A., “On a theorem of Torelli”, Amer. J. Math., 80 (1958), 801–828 | DOI | MR | Zbl