Euler equations on finite-dimensional solvable Lie groups
Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 405-412
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a construction of “rigid body” operators on Borel subalgebras is given. Complete integrability of Euler equations with such operators is proved. In addition, using a noncommutative method of integrating Hamiltonian systems, complete integrability of an “unconstrained rigid body” on the cotangent bundle of a Borel subgroup is proved.
Bibliography: 10 titles.
@article{IM2_1981_17_2_a8,
author = {V. V. Trofimov},
title = {Euler equations on finite-dimensional solvable {Lie} groups},
journal = {Izvestiya. Mathematics },
pages = {405--412},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a8/}
}
V. V. Trofimov. Euler equations on finite-dimensional solvable Lie groups. Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 405-412. http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a8/