Theorems of Jackson type in~$H^p$,~$0$
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 203-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an analogue of Jackson's inequality is established for the Hardy spaces $H^p$ $(0$: if $f^{(k)}\in H^p$, then $$ E_n(f)_p=O\biggl((n+1)^{-k}\omega_l\biggl(\frac1{n+1},\frac{\partial^kf}{\partial\varphi^k}\biggr)_{\!p}\,\biggr),\quad\text{as}\quad n\to\infty, $$ $k=0,1,\dots$; $ l=1,2,\dots$, and $\partial^kf/\partial\varphi^k=\lim_{r\to1-0}{\partial^kf(re^{i\varphi})}/{\partial\varphi^k}$. Bibliography: 15 titles.
@article{IM2_1981_17_1_a8,
     author = {\`E. A. Storozhenko},
     title = {Theorems of {Jackson} type in~$H^p$,~$0<p<1$},
     journal = {Izvestiya. Mathematics },
     pages = {203--218},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a8/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - Theorems of Jackson type in~$H^p$,~$0
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 203
EP  - 218
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a8/
LA  - en
ID  - IM2_1981_17_1_a8
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T Theorems of Jackson type in~$H^p$,~$0
%J Izvestiya. Mathematics 
%D 1981
%P 203-218
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a8/
%G en
%F IM2_1981_17_1_a8
È. A. Storozhenko. Theorems of Jackson type in~$H^p$,~$0
                  
                

[1] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Diss., Göttingen, 1911

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[3] Hardy G. H., Littlewood J. E., “A maximal theorem with function-theoretic applications”, Acta Math., 54 (1930), 81–116 | DOI | MR | Zbl

[4] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals. II”, Math. Z., 34 (1931), 403–439 | DOI | MR | Zbl

[5] Hardy G. H., Littlewood J. E., “Theorems concerning Cesaro means of power series”, Proc. London Math. Soc., 36 (1934), 516–531 | DOI | Zbl

[6] Duren P. L., Theory of $H^p$ spaces, Academic Press, New York, London, 1970 | MR

[7] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GTTL, M., L., 1950

[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[9] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15 (1951), 219–242 | Zbl

[10] Ivanov V. I., “Pryamye i obratnye teoremy teorii priblizheniya v metrike $L_p$ dlya $0

1$”, Matem. zametki, 18 (1975), 641–658 | Zbl

[11] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0

1$”, Matem. sb., 98 (1975), 395–415 | MR | Zbl

[12] Storozhenko E. A., Osvald P., “Teoremy Dzheksona v prostranstvakh $L_p(R^k)$, $0

1$”, Dokl. AN SSSR, 229 (1976)), 554–557 ; Сиб. матем. ж., 19 (1978), 888–901 | Zbl | Zbl

[13] Storozhenko E. A., “O priblizhenii funktsii klassa $H^p$,$0

\leqslant 1$”, Soobscheniya AN GruzSSR, 88 (1977), 45–47

[14] Storozhenko E. A., “Priblizhenie funktsii klassa $H^p$, $0

1$”, Matem. sb., 105 (1978), 601–621 | MR | Zbl

[15] Storozhenko E. A., “O skorosti priblizheniya funktsii klassa $H^p$, $0

\leqslant 1$”, Dokl. AN ArmSSR, 66 (1978), 145–149 | Zbl