Kronecker's limit formula in a~real quadratic field
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 147-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author obtains a formula representing the free term of the Laurent expansion of the zeta functions of absolute and ray classes of a real quadratic field at the point 1, as well as the value of Hecke's $L$-function corresponding to the signature character. The formula contains Dedekind sums and sums analogous to them in which functions depending on the same arguments as in ordinary Dedekind sums appear. Bibliography: 4 titles.
@article{IM2_1981_17_1_a6,
     author = {A. P. Novikov},
     title = {Kronecker's limit formula in a~real quadratic field},
     journal = {Izvestiya. Mathematics },
     pages = {147--176},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a6/}
}
TY  - JOUR
AU  - A. P. Novikov
TI  - Kronecker's limit formula in a~real quadratic field
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 147
EP  - 176
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a6/
LA  - en
ID  - IM2_1981_17_1_a6
ER  - 
%0 Journal Article
%A A. P. Novikov
%T Kronecker's limit formula in a~real quadratic field
%J Izvestiya. Mathematics 
%D 1981
%P 147-176
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a6/
%G en
%F IM2_1981_17_1_a6
A. P. Novikov. Kronecker's limit formula in a~real quadratic field. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 147-176. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a6/

[1] Beitmen G., Erdein A., Vysshie transtsendentnye funktsii, Nauka, M., 1973

[2] Meyer C., Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern, Akademie-Verlag, Berlin, 1957 | MR | Zbl

[3] Zagier D., “A Kronecker limit formula for real quadratic fields”, Math. Ann., 213:2 (1975), 153–184 | DOI | MR | Zbl

[4] Shintani T., “On a Kronecker limit formula for real quadratic fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:1 (1977), 167–199 | MR | Zbl