Reflexivity and best approximations in Fr\'echet spaces
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 87-94

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a negative answer to the following question of M. Wriedt: Is it true that in every projective limit of reflexive Banach spaces there exists a normlike metric for which all closed hyperplanes are proximinal? In particular, it is shown that if $E[\mathfrak T]$ is a nuclear Fréchet space nonisomorphic to the space of all sequences $\omega$, then for an arbitrary normlike metric $d$ on $E$ inducing the topology $\mathfrak T$, there exist nonproximinal closed hyperplanes. Bibliography: 14 titles.
@article{IM2_1981_17_1_a3,
     author = {D. N. Zarnadze},
     title = {Reflexivity and best approximations in {Fr\'echet} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {87--94},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/}
}
TY  - JOUR
AU  - D. N. Zarnadze
TI  - Reflexivity and best approximations in Fr\'echet spaces
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 87
EP  - 94
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/
LA  - en
ID  - IM2_1981_17_1_a3
ER  - 
%0 Journal Article
%A D. N. Zarnadze
%T Reflexivity and best approximations in Fr\'echet spaces
%J Izvestiya. Mathematics 
%D 1981
%P 87-94
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/
%G en
%F IM2_1981_17_1_a3
D. N. Zarnadze. Reflexivity and best approximations in Fr\'echet spaces. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/