Reflexivity and best approximations in Fr\'echet spaces
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 87-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a negative answer to the following question of M. Wriedt: Is it true that in every projective limit of reflexive Banach spaces there exists a normlike metric for which all closed hyperplanes are proximinal? In particular, it is shown that if $E[\mathfrak T]$ is a nuclear Fréchet space nonisomorphic to the space of all sequences $\omega$, then for an arbitrary normlike metric $d$ on $E$ inducing the topology $\mathfrak T$, there exist nonproximinal closed hyperplanes. Bibliography: 14 titles.
@article{IM2_1981_17_1_a3,
     author = {D. N. Zarnadze},
     title = {Reflexivity and best approximations in {Fr\'echet} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {87--94},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/}
}
TY  - JOUR
AU  - D. N. Zarnadze
TI  - Reflexivity and best approximations in Fr\'echet spaces
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 87
EP  - 94
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/
LA  - en
ID  - IM2_1981_17_1_a3
ER  - 
%0 Journal Article
%A D. N. Zarnadze
%T Reflexivity and best approximations in Fr\'echet spaces
%J Izvestiya. Mathematics 
%D 1981
%P 87-94
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/
%G en
%F IM2_1981_17_1_a3
D. N. Zarnadze. Reflexivity and best approximations in Fr\'echet spaces. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/

[1] Köthe G., Topologische lineare Räume. I, Springer, Berlin, Göttingen, Heidelberg, 1960 | MR | Zbl

[2] Albinus G., “Normartige Metriken auf metrisierbaren lokalkonvexen topologischen Vektorräumen”, Math. Nachr., 37 (1968), 177–195 | DOI | MR

[3] Albinus G., “Approximationstheorie im Raum $C(R)$”, Beiträge zur Analysis, 3 (1972), 31–44 | MR | Zbl

[4] Floret K., Wriedt M., “Reflexivität und Bestapproximation in Frechet-Räumen”, Arch. Math., 23 (1972), 70–72 | DOI | MR | Zbl

[5] Wriedt M., “Beiträge zur Approximationstheoirie in metrisierbaren lokalkonvexen Räumen”, Math. Nachr., 64 (1974), 135–147 | DOI | MR | Zbl

[6] Zarnadze D. N., “Ob odnoi kharakterizatsii strogikh $(\mathscr{LB})$-prostranstv”, Konferentsiya molodykh uchenykh po matematike i mekhanike, Tbilisi, 1976, 69–72

[7] Amemiya I., “Some examples of $(\mathscr F)$ and $(\mathscr{DF})$-spaces”, Proc. Japan Acad., 33 (1957), 169–171 | DOI | MR | Zbl

[8] Pfister H., “Bemerkungen zum Satz über die Separabilität der Frechet-Montel- Räume”, Arch. Math., 27:1 (1976), 86–93 | DOI | MR

[9] Zarnadze D. N., “Kharakterizatsiya elementa nailuchshego priblizheniya lineinymi funktsionalami v lineinykh metricheskikh prostranstvakh”, Soobscheniya AN GruzSSR, 79:2 (1975), 289–292 | MR | Zbl

[10] Makarov B. M., “Ob induktivnykh predelakh normirovannykh prostranstv”, Vestnik LGU, 1965, no. 13, 50–58 | Zbl

[11] Dieudonne J., Schwartz L., “La dualite dans les espases $(\mathscr F)$ et $(\mathscr{LF})$”, Ann. Inst. Fourier (Grenoble), 1949, no. 1, 61–101 | MR | Zbl

[12] Zarnadze D. N., “Ob approksimativnoi kompaktnosti v schetno-normirovannykh prostranstvakh”, Soobscheniya AN GruzSSR, 78:1 (1975), 29–32 | MR | Zbl

[13] James R., “Characterisation of reflexivity”, Ann. Math., 66 (1957), 159–169 | DOI | Zbl

[14] James R., “Characterisation of reflexivity”, Studia Math., 23:3 (1964), 205–216 | MR | Zbl