Reflexivity and best approximations in Fr\'echet spaces
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 87-94
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper gives a negative answer to the following question of M. Wriedt: Is it true that in every projective limit of reflexive Banach spaces there exists a normlike metric for which all closed hyperplanes are proximinal?
In particular, it is shown that if $E[\mathfrak T]$ is a nuclear Fréchet space nonisomorphic to the space of all sequences $\omega$, then for an arbitrary normlike metric $d$ on $E$ inducing the topology $\mathfrak T$, there exist nonproximinal closed hyperplanes.
Bibliography: 14 titles.
@article{IM2_1981_17_1_a3,
author = {D. N. Zarnadze},
title = {Reflexivity and best approximations in {Fr\'echet} spaces},
journal = {Izvestiya. Mathematics },
pages = {87--94},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/}
}
D. N. Zarnadze. Reflexivity and best approximations in Fr\'echet spaces. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a3/