On arithmetic groups generated by reflections in Lobachevskii spaces
Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 573-601.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using È.  B. Vinberg's arithmeticity criterion, the author defines the notion of the Galois lattice of a discrete arithmetic group generated by reflections in a Lobachevskii space. The author proves finiteness of the set of such lattices and, as a corollary, finiteness of the set of maximal discrete arithmetic groups generated by reflections for fixed dimension of the Lobachevskii space and fixed degree of the ground field over $\mathbf Q$. Bibliography: 19 titles.
@article{IM2_1981_16_3_a4,
     author = {V. V. Nikulin},
     title = {On arithmetic groups generated by reflections in {Lobachevskii} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {573--601},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a4/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - On arithmetic groups generated by reflections in Lobachevskii spaces
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 573
EP  - 601
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a4/
LA  - en
ID  - IM2_1981_16_3_a4
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T On arithmetic groups generated by reflections in Lobachevskii spaces
%J Izvestiya. Mathematics 
%D 1981
%P 573-601
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a4/
%G en
%F IM2_1981_16_3_a4
V. V. Nikulin. On arithmetic groups generated by reflections in Lobachevskii spaces. Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 573-601. http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a4/

[1] D. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[2] Andreev E. M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl

[3] Andreev E. M., “O vypuklykh mnogogrannikakh konechnogo ob'ema v prostranstvakh Lobachevskogo”, Matem. sb., 83:2 (1970), 256–260 | MR | Zbl

[4] Andreev E. M., “O peresechenii ploskostei granei mnogogrannikov s ostrymi uglami”, Matem. zametki, 8:4 (1970), 521–527 | MR | Zbl

[5] Borel A., Harish-Chandra, “Arithmetic subrgroups of algebraic groups”, Ann. Math., 75:3 (1962), 485–535 ; Matematika, 8:2 (1964), 19–71 | DOI | MR | Zbl | MR

[6] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[7] Burbaki N., Gruppy i algebry Li, gl. IV-VI, Mir, M., 1972 | MR | Zbl

[8] Vinberg E. B., “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobachevskogo”, Matem. sb., 72:3 (1967), 471–488 | MR | Zbl

[9] Vinberg E. B., “Diskretnye lineinye gruppy, porozhdennye otrazheniyami”, Izv. AN SSSR. Ser. matem., 35 (1971), 1072–1112 | MR | Zbl

[10] Vinberg E. B., “Some arithmetical discrete groups in Lobacevscii spacez”, Proceedings of the International Colloquium on Discrete Subgroups of Lie Groups and Applications to Moduli (Bombay, January 1973), 323–348 | MR | Zbl

[11] Vinberg E. B., Kaplinskaya I. M., “O gruppakh $O_{18,1}$ $(\mathbf Z)$ i $O_{19,1}$ $(\mathbf Z)$”, Dokl. AN SSSR, 238:6 (1978), 1273–1275 | MR | Zbl

[12] Cartan E., “La geometrie des groupes simples”, Ann. di Math., 4:4 (1927), 209–256 | DOI | MR | Zbl

[13] Cartan E., “Complement au memoire "Sur la geometrie des groupes simples”, Ann. di Math., 5:4 (1928), 253–260 | DOI | MR | Zbl

[14] Coxeter H. S. M., “Discrete groups generated by reflections”, Ann. Math., 35:2 (1934), 588–621 | DOI | MR | Zbl

[15] Makarov V. S., “Ob odnom klasse diskretnykh grupp prostranstva Lobachevskogo, imeyuschikh beskonechnuyu fundamentalnuyu oblast konechnoi mery”, Dokl. AN SSSR, 167:1 (1966), 30–33 | Zbl

[16] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43 (1979), 111–177 | MR | Zbl

[17] Nikulin V. V., “O faktor-gruppakh grupp avtomorfizmov giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami”, Dokl. AN SSSR, 248:6 (1979), 1307–1309 | MR | Zbl

[18] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa $K3$”, Izv. AN SSSR. Ser. Matem., 35 (1971), 530–572

[19] Fricke R., Klein F., Theorie der automorphen Funktionen, Leipzig (Teubner), 1897