Continuity of a~multivalued mapping connected with the problem of minimizing a~functional
Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 431-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ and $U$ be locally convex spaces, $\varphi(x,u)$ a proper convex lower semicontinuous functional on $X\times U$ and $t=t(u)\geqslant\inf\{\varphi(x,u)\colon x\in X\}$. This paper gives conditions for the multivalued mapping $$ \Phi_t\colon u\in U\to \Phi_t(u)=\{x\in X\colon\varphi(x,u)\leqslant t\} $$ to be uniformly continuous and satisfy a Lipschitz condition, and determines the relation of $\Phi_t$ with other multivalued mappings, in particular, with a metric projection. On the basis of the functional conjugate to $\varphi$ a mapping conjugate to $\Phi_t$ is introduced and a condition for its upper semicontinuity is presented. The problem of minimizing a homogeneous convex functional on a convex set is considered. Bibliography: 21 titles.
@article{IM2_1981_16_3_a0,
     author = {V. I. Berdyshev},
     title = {Continuity of a~multivalued mapping connected with the problem of minimizing a~functional},
     journal = {Izvestiya. Mathematics },
     pages = {431--456},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a0/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Continuity of a~multivalued mapping connected with the problem of minimizing a~functional
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 431
EP  - 456
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a0/
LA  - en
ID  - IM2_1981_16_3_a0
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Continuity of a~multivalued mapping connected with the problem of minimizing a~functional
%J Izvestiya. Mathematics 
%D 1981
%P 431-456
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a0/
%G en
%F IM2_1981_16_3_a0
V. I. Berdyshev. Continuity of a~multivalued mapping connected with the problem of minimizing a~functional. Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 431-456. http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a0/

[1] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[2] Joly J., Laurent P. J., “Stability and duality in convex minimization problems”, Rev. Franc. caise Informat. Recherche Opérationnelle, 5 (1971), 3–42 | MR | Zbl

[3] Kuratovskii K., Topologiya, t. I, Mir, M., 1966 | MR

[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[5] Singer L., The theory of best approximation and functional analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No 13, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1974 | MR

[6] Khausdorf F., Teoriya mnozhestv, Gostekhizdat, M., 1937

[7] Garkavi A. L., “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Matem. analiz. Itogi nauki 1967, 1969, 75–132 | MR | Zbl

[8] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi matem. nauk, 28:6 (1973), 3–66 | MR | Zbl

[9] Dantzig G. B., Folkman J., Shapiro N., “On the continuity of the minimum set of continuous function”, J. Math. Anal. Appl., 17 (1967), 519–548 | DOI | MR | Zbl

[10] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR

[11] Berdyshev V. I., “Ustoichivost zadachi minimizatsii pri vozmuschenii mnozhestva dopustimykh elementov”, Matem. sbornik, 103:4 (1977), 467–479 | MR | Zbl

[12] Berdyshev V. I., “Ravnomernaya nepreryvnost metricheskoi proektsii i $\nu$-proektsii”, Teoriya priblizheniya funktsii, Trudy Mezhdunarodn. konf. po teorii priblizh. funktsii, Nauka, M., 1977, 37–41 | MR

[13] Tikhonov A. N., “Ob ustoichivosti zadachi optimizatsii funktsionalov”, Zhurnal vychisl. matem. i matem. fiz., 6:4 (1966), 631–634 | Zbl

[14] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR

[15] Efimov N. V., Stechkin S. B., “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl

[16] Ioffe A. D., Tikhomirov V. M., “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, Uspekhi matem. nauk, 23:6(144) (1968), 51–116 | MR | Zbl

[17] Clarkson J. A., “Uniformly convex spaces”, Trans. Amer. Math. Soc., 40:3 (1936), 394–414 | DOI | MR

[18] Berdyshev V. I., “Nepreryvnaya zavisimost elementa, realizuyuschego minimum vypuklogo funktsionala, ot mnozhestva dopustimykh elementov”, Matem. zametki, 19:4 (1976), 501–512 | Zbl

[19] Daniel J. W., “The continuity of metric projections as a functions of the Data”, J. Approximationtheory, 12:3 (1974), 234–240 | DOI | MR

[20] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961

[21] Pshenichnyi B. N., “Vypuklye mnogoznachnye otobrazheniya i im sopryazhennye”, Kibernetika, 3 (1972), 94–102