Continuity of a~multivalued mapping connected with the problem of minimizing a~functional
Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 431-456
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ and $U$ be locally convex spaces, $\varphi(x,u)$ a proper convex lower semicontinuous functional on $X\times U$ and $t=t(u)\geqslant\inf\{\varphi(x,u)\colon x\in X\}$. This paper gives conditions for the multivalued mapping
$$
\Phi_t\colon u\in U\to \Phi_t(u)=\{x\in X\colon\varphi(x,u)\leqslant t\}
$$
to be uniformly continuous and satisfy a Lipschitz condition, and determines the relation of $\Phi_t$ with other multivalued mappings, in particular, with a metric projection. On the basis of
the functional conjugate to $\varphi$ a mapping conjugate to $\Phi_t$ is introduced and a condition for its upper semicontinuity is presented. The problem of minimizing a homogeneous convex functional on a convex set is considered.
Bibliography: 21 titles.
@article{IM2_1981_16_3_a0,
author = {V. I. Berdyshev},
title = {Continuity of a~multivalued mapping connected with the problem of minimizing a~functional},
journal = {Izvestiya. Mathematics },
pages = {431--456},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a0/}
}
V. I. Berdyshev. Continuity of a~multivalued mapping connected with the problem of minimizing a~functional. Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 431-456. http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a0/