An infinite group with subgroups of prime orders
Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 279-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite nonabelian group all of whose proper subgroups have prime order is constructed. This solves a problem of O. Yu. Schmidt. The proof involves modifying and extending the series of lemmas in an earlier paper of the author. Bibliography: 3 titles.
@article{IM2_1981_16_2_a3,
     author = {A. Yu. Ol'shanskii},
     title = {An infinite group with subgroups of prime orders},
     journal = {Izvestiya. Mathematics },
     pages = {279--289},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - An infinite group with subgroups of prime orders
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 279
EP  - 289
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a3/
LA  - en
ID  - IM2_1981_16_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T An infinite group with subgroups of prime orders
%J Izvestiya. Mathematics 
%D 1981
%P 279-289
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a3/
%G en
%F IM2_1981_16_2_a3
A. Yu. Ol'shanskii. An infinite group with subgroups of prime orders. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 279-289. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a3/

[1] Olshanskii A. Yu., “Beskonechnye gruppy s tsiklicheskimi podgruppami”, Dokl. AN SSSR, 245:4 (1979), 785–787 | MR

[2] Olshanskii A. Yu., “Beskonechnaya prostaya neterova gruppa bez krucheniya”, Izv. AN SSSR. Ser. matem., 43 (1979), 1328–1393 | MR

[3] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl