An estimate of the measure of the set of planes almost tangent to a~compactum with bounded variations
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 135-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in a Euclidean space almost all planes intersecting a compactum with finite variations are in general position with respect to it. An example is given showing that the requirement of the boundedness of the corresponding variation is necessary. Bibliography: 3 titles.
@article{IM2_1981_16_1_a6,
     author = {G. Yu. Zaitsev},
     title = {An estimate of the measure of the set of planes almost tangent to a~compactum with bounded variations},
     journal = {Izvestiya. Mathematics },
     pages = {135--150},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a6/}
}
TY  - JOUR
AU  - G. Yu. Zaitsev
TI  - An estimate of the measure of the set of planes almost tangent to a~compactum with bounded variations
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 135
EP  - 150
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a6/
LA  - en
ID  - IM2_1981_16_1_a6
ER  - 
%0 Journal Article
%A G. Yu. Zaitsev
%T An estimate of the measure of the set of planes almost tangent to a~compactum with bounded variations
%J Izvestiya. Mathematics 
%D 1981
%P 135-150
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a6/
%G en
%F IM2_1981_16_1_a6
G. Yu. Zaitsev. An estimate of the measure of the set of planes almost tangent to a~compactum with bounded variations. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 135-150. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a6/

[1] Zaitsev G. Yu., “Integralnaya otsenka uklonenii mnozhestv v secheniyakh”, Izv. AN SSSR. Ser. matem., 42 (1978), 972–988 | MR

[2] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[3] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR