Rational $G$-surfaces
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 103-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the author determines the structure of complete rational surfaces on which one can define a group action in such a way that for each element of the group there exists a nonzero linear equivalence divisor class with nonnegative self-intersection index which is invariant with respect to this element. If one excludes the case when this action factors through an algebraic action of a linear algebraic group, then all such surfaces are elliptic bundles, and the action of the group preserves the family of fibers.
Bibliography: 11 titles.
@article{IM2_1981_16_1_a5,
author = {M. Kh. Gizatullin},
title = {Rational $G$-surfaces},
journal = {Izvestiya. Mathematics },
pages = {103--134},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a5/}
}
M. Kh. Gizatullin. Rational $G$-surfaces. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 103-134. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a5/