Rational $G$-surfaces
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 103-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author determines the structure of complete rational surfaces on which one can define a group action in such a way that for each element of the group there exists a nonzero linear equivalence divisor class with nonnegative self-intersection index which is invariant with respect to this element. If one excludes the case when this action factors through an algebraic action of a linear algebraic group, then all such surfaces are elliptic bundles, and the action of the group preserves the family of fibers. Bibliography: 11 titles.
@article{IM2_1981_16_1_a5,
     author = {M. Kh. Gizatullin},
     title = {Rational $G$-surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {103--134},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a5/}
}
TY  - JOUR
AU  - M. Kh. Gizatullin
TI  - Rational $G$-surfaces
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 103
EP  - 134
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a5/
LA  - en
ID  - IM2_1981_16_1_a5
ER  - 
%0 Journal Article
%A M. Kh. Gizatullin
%T Rational $G$-surfaces
%J Izvestiya. Mathematics 
%D 1981
%P 103-134
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a5/
%G en
%F IM2_1981_16_1_a5
M. Kh. Gizatullin. Rational $G$-surfaces. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 103-134. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a5/