On the approximation of $x^\alpha$ by rational functions
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 83-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weak equivalence type estimates are obtained for the smallest deviation of $x^\alpha$ ($\alpha$ a proper fraction) from the rational functions of degree not greater than $n=1,2,\dots$ in the metrics of $L_p[0,1]$ ($1\leqslant p\leqslant\infty$). Bibliography: 15 titles.
@article{IM2_1981_16_1_a4,
     author = {N. S. Vyacheslavov},
     title = {On the approximation of $x^\alpha$ by rational functions},
     journal = {Izvestiya. Mathematics },
     pages = {83--101},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/}
}
TY  - JOUR
AU  - N. S. Vyacheslavov
TI  - On the approximation of $x^\alpha$ by rational functions
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 83
EP  - 101
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/
LA  - en
ID  - IM2_1981_16_1_a4
ER  - 
%0 Journal Article
%A N. S. Vyacheslavov
%T On the approximation of $x^\alpha$ by rational functions
%J Izvestiya. Mathematics 
%D 1981
%P 83-101
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/
%G en
%F IM2_1981_16_1_a4
N. S. Vyacheslavov. On the approximation of $x^\alpha$ by rational functions. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/

[1] Newman D. J., “Rational approximation to $|x|$”, Michigan Math. J., 11:1 (1964), 11–14 | DOI | MR | Zbl

[2] Freud G., Szabados J., “Rational approximation to $x^\alpha$”, Acta Math. Acad. Sci. Hung., 18:3–4 (1967), 393–399 | DOI | MR | Zbl

[3] Bulanov A. P., “Priblizhenie $x^{1/3}$ ratsionalnymi funktsiyami”, Izv. AN BSSR, seriya fiz.-matem. nauk, 1968, no. 2, 47–56 | MR | Zbl

[4] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sb., 73:4 (1967), 630–638 | Zbl

[5] Bulanov A. P., “Asimptotika dlya naimenshikh uklonenii $|x|$ ot ratsionalnykh funktsii”, Matem. sb., 76:2 (1968), 288–303 | MR | Zbl

[6] Gonchar A. A., “O ratsionalnoi approksimatsii funktsii $x^\alpha$”, Tr. Mezhdunarodnoi Konferentsii po konstruktivnoi teorii funktsii (Varna, 19–25 maya, 1970) | Zbl

[7] Gonchar A. A., “Skorost ratsionalnoi approksimatsii i svoistvo odnoznachnosti analiticheskoi funktsii v okrestnosti izolirovannoi osoboi tochki”, Matem. sb., 94:2 (1974), 265–282 | MR | Zbl

[8] Vyacheslavov N. S., “O priblizhenii funktsii $|x|$ ratsionalnymi funktsiyami”, Matem. zametki, 16:1 (1974), 163–171 | Zbl

[9] Vyacheslavov N. S., “O ravnomernom priblizhenii $|x|$ ratsionalnymi funktsiyami”, Dokl. AN SSSR, 220:3 (1975), 512–515 | Zbl

[10] Tzimbalario J., “Rational approximation to $x^\alpha$”, J. of Approxim. Theory, 16:2 (1976), 187–193 | DOI | MR | Zbl

[11] Vyacheslavov N. S., “O naimenshikh ukloneniyakh funktsii $\text{sign} x$ i ee pervoobraznykh ot ratsionalnykh funktsii v metrikakh $L_p$, $0

\leqslant\infty$”, Matem. sb., 103:5 (1977), 24–36 | Zbl

[12] Cheney E. W., Goldstein A. A., “Mean-square approximation by generalized rational functions”, Math. Zeitschr., 95:3 (1967), 232–241 | DOI | MR | Zbl

[13] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[14] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[15] Ramazanov A. K., Priblizhenie funktsii $x^\alpha$ ratsionalnymi drobyami, Tezisy konferentsii “Molodezh i obschestvennyi progress”, Makhachkala, 1978