On the approximation of $x^\alpha$ by rational functions
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 83-101

Voir la notice de l'article provenant de la source Math-Net.Ru

Weak equivalence type estimates are obtained for the smallest deviation of $x^\alpha$ ($\alpha$ a proper fraction) from the rational functions of degree not greater than $n=1,2,\dots$ in the metrics of $L_p[0,1]$ ($1\leqslant p\leqslant\infty$). Bibliography: 15 titles.
@article{IM2_1981_16_1_a4,
     author = {N. S. Vyacheslavov},
     title = {On the approximation of $x^\alpha$ by rational functions},
     journal = {Izvestiya. Mathematics },
     pages = {83--101},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/}
}
TY  - JOUR
AU  - N. S. Vyacheslavov
TI  - On the approximation of $x^\alpha$ by rational functions
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 83
EP  - 101
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/
LA  - en
ID  - IM2_1981_16_1_a4
ER  - 
%0 Journal Article
%A N. S. Vyacheslavov
%T On the approximation of $x^\alpha$ by rational functions
%J Izvestiya. Mathematics 
%D 1981
%P 83-101
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/
%G en
%F IM2_1981_16_1_a4
N. S. Vyacheslavov. On the approximation of $x^\alpha$ by rational functions. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a4/