On the zeros of some Dirichlet series lying on the critical line
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 55-82
Voir la notice de l'article provenant de la source Math-Net.Ru
A linear combination of Dirichlet $L$-functions which are known not to have an Euler product is considered. It is proved that the interval
$$
\biggl[\frac12-iT,\frac12+iT\biggr]
$$
contains for an arbitrary constant $c>0$ more than $cT$ zeros for $T\to\infty$.
Bibliography: 9 titles.
@article{IM2_1981_16_1_a3,
author = {S. M. Voronin},
title = {On the zeros of some {Dirichlet} series lying on the critical line},
journal = {Izvestiya. Mathematics },
pages = {55--82},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a3/}
}
S. M. Voronin. On the zeros of some Dirichlet series lying on the critical line. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 55-82. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a3/