Rearrangements of Fourier--Walsh series
Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 259-275

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a method of rearranging Fourier–Walsh series is proposed that yields an essentially stronger estimate than previously known on a Weyl multiplier for unconditional convergence almost everywhere. The question of unconditional convergence almost everywhere of Fourier–Walsh series of $H^\omega$-functions is also studied. Bibliography: 8 titles.
@article{IM2_1980_15_2_a2,
     author = {S. V. Bochkarev},
     title = {Rearrangements of {Fourier--Walsh} series},
     journal = {Izvestiya. Mathematics },
     pages = {259--275},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a2/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Rearrangements of Fourier--Walsh series
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 259
EP  - 275
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a2/
LA  - en
ID  - IM2_1980_15_2_a2
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Rearrangements of Fourier--Walsh series
%J Izvestiya. Mathematics 
%D 1980
%P 259-275
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a2/
%G en
%F IM2_1980_15_2_a2
S. V. Bochkarev. Rearrangements of Fourier--Walsh series. Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 259-275. http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a2/