Rearrangements of Fourier--Walsh series
Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 259-275
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a method of rearranging Fourier–Walsh series is proposed that yields an essentially stronger estimate than previously known on a Weyl multiplier for unconditional convergence almost everywhere. The question of unconditional convergence almost everywhere of Fourier–Walsh series of $H^\omega$-functions is also studied.
Bibliography: 8 titles.
@article{IM2_1980_15_2_a2,
author = {S. V. Bochkarev},
title = {Rearrangements of {Fourier--Walsh} series},
journal = {Izvestiya. Mathematics },
pages = {259--275},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a2/}
}
S. V. Bochkarev. Rearrangements of Fourier--Walsh series. Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 259-275. http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a2/