On real homotopy properties of complete intersections
Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 241-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

The real homotopy type of complete intersections in $\mathbf CP^N$ is studied. It is proved that these manifolds are intrinsically formal in the sense of Stashev and Gal'perin. The Poincaré series of the loop space on complete intersections is computed, and thus the validity of the Serre conjecture on the rationality for such complexes is established. As a corollary, a formula for the rational homotopy groups of a complete intersection is obtained. Bibliography: 12 titles.
@article{IM2_1980_15_2_a1,
     author = {I. K. Babenko},
     title = {On real homotopy properties of complete intersections},
     journal = {Izvestiya. Mathematics },
     pages = {241--258},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a1/}
}
TY  - JOUR
AU  - I. K. Babenko
TI  - On real homotopy properties of complete intersections
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 241
EP  - 258
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a1/
LA  - en
ID  - IM2_1980_15_2_a1
ER  - 
%0 Journal Article
%A I. K. Babenko
%T On real homotopy properties of complete intersections
%J Izvestiya. Mathematics 
%D 1980
%P 241-258
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a1/
%G en
%F IM2_1980_15_2_a1
I. K. Babenko. On real homotopy properties of complete intersections. Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 241-258. http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a1/

[1] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[2] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[3] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[4] Veil A., Vvedenie v teoriyu kelerovykh mnogoobrazii, IL, M., 1961

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[6] Griffits F., Delin P., Morgan Dzh., Sullivan D., “Veschestvennaya gomotopicheskaya teoriya kelerovykh mnogoobrazii”, Uspekhi matem. nauk, 32:3 (1977), 119–152 | MR

[7] Halperin S., Stasheff J., Obstructions to Homotopy Equivalences, Preprint, 1977 | MR

[8] Babenko I. K., “Ob analiticheskikh svoistvakh ryadov Puankare prostranstv petel”, Matem. zametki, 26:6 (1979)

[9] Hilton P., Steer B., “On fibered Categories and Cohomology”, Topology, 8:3 (1969), 243–251 | DOI | MR | Zbl

[10] Sullivan D., “Infinitesimal Computations in Topology”, Publ. Math. Paris, 47 (1977), 269–331 | MR | Zbl

[11] Babenko I. K., “Algebry Li gomotopicheskikh grupp minimalnykh modelei Sullivana”, Matem. zametki, 20:6 (1976), 793–804 | MR | Zbl

[12] Babenko I. K., “O ryadakh Puankare kratnykh prostranstv petel”, Uspekhi matem. nauk, 34:3 (1979), 191–192 | MR | Zbl