The existence of a~straight line on Fano 3-folds
Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 173-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper is shown the existence of a straight line on a Fano 3-fold of the principal series (under the anticanonical embedding) if the 3-fold has index 1 and is not isomorphic to the product $\mathbf P^1\times\mathbf P^2$. Bibliography: 13 titles.
@article{IM2_1980_15_1_a7,
     author = {V. V. Shokurov},
     title = {The existence of a~straight line on {Fano} 3-folds},
     journal = {Izvestiya. Mathematics },
     pages = {173--209},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a7/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - The existence of a~straight line on Fano 3-folds
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 173
EP  - 209
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a7/
LA  - en
ID  - IM2_1980_15_1_a7
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T The existence of a~straight line on Fano 3-folds
%J Izvestiya. Mathematics 
%D 1980
%P 173-209
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a7/
%G en
%F IM2_1980_15_1_a7
V. V. Shokurov. The existence of a~straight line on Fano 3-folds. Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 173-209. http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a7/

[1] Bombieri E., “Canonical models of surfaces of general type”, Inst. Hautes Études Sci. Publ. Math., 42 (1973), 171–219 | DOI | MR

[2] Bombieri E., Husemoller D., “Classification and embeddings of surfaces”, Proceedings of Symposia in Pure Mathematics, 29, 1975, 329–421 | MR

[3] Enriques F., Le superficie Algebraiche, Nicola Zanichelli, Bologna, 1949 | MR | Zbl

[4] Fano G., “Sulle varietá algebraiche a tre dimensioni a curve-seczioni canoniche”, Comm. Math. Helvetici, 14 (1941, 1942), 23–64 | DOI | MR

[5] Hartshorne R., Algebraic geometry, Graduated Textes in Math., 52, Springer Verlag, 1977 | MR | Zbl

[6] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano, I”, Izv. AN SSSR. Ser. matem., 41 (1977), 516–562 | MR | Zbl

[7] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano, II”, Izv. AN SSSR. Ser. matem., 42 (1978), 506–549 | MR | Zbl

[8] Kulikov V. S., “Vyrozhdeniya poverkhnostei tipa K3 i poverkhnostei Enrikvesa”, Izv. AN SSSR. Ser. matem., 41 (1977), 1008–1042 | MR | Zbl

[9] Mumford D., “Varieties defined by quadratic equvations”, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, 29–100 | MR

[10] Nagata M., “On rational surfaces, I”, Memoirs of the College of Sceince Kyoto, 1963; Matematika, 8:1 (1964), 55–71

[11] Roth L., Algebraic threefolds with special regard to problems of rationality, Springer, Berlin, Heidelberg, New York, 1955 | MR

[12] Shokurov V. V., “Gladkost obschego antikanonicheskogo divizora na mnogoobrazii Fano”, Izv. AN SSSR. Ser. matem., 43 (1979), 430–441 | MR | Zbl

[13] Saint-Donat B., “Projective models of K3 surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl