Tensor products of unitary representations of the three-dimensional Lorentz group
Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 113-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author obtains a decomposition into irreducible representations of the tensor product of any two irreducible unitary representations of the group $SO_0(1,2)$. An explicit construction of this decomposition is given, and the corresponding Plancherel measure is found. Bibliography: 13 titles.
@article{IM2_1980_15_1_a4,
     author = {V. F. Molchanov},
     title = {Tensor products of unitary representations of the three-dimensional {Lorentz} group},
     journal = {Izvestiya. Mathematics },
     pages = {113--143},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a4/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Tensor products of unitary representations of the three-dimensional Lorentz group
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 113
EP  - 143
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a4/
LA  - en
ID  - IM2_1980_15_1_a4
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Tensor products of unitary representations of the three-dimensional Lorentz group
%J Izvestiya. Mathematics 
%D 1980
%P 113-143
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a4/
%G en
%F IM2_1980_15_1_a4
V. F. Molchanov. Tensor products of unitary representations of the three-dimensional Lorentz group. Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 113-143. http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a4/

[1] Pukanszky L., “On the Kronecker products of irreducible representations of the $2\times2$ real unimodular group, I”, Trans. Amer. Math. Soc., 100:1 (1961), 116–152 | DOI | MR | Zbl

[2] Repka J., “Tensor products of unitary represntations of $SL_2(\mathbf{R})$”, Bull. Amer. Math. Soc., 82:6 (1976), 930–932 | DOI | MR | Zbl

[3] Mukunda N., Radhakrishnan B., “The Clebsh–Gordan problem and coefficients for the three-dimensional Lorentz group in a continuous basis, I–IV”, J. Math. Phys., 15:8 (1974), 1320–1331, 1332–1342 | DOI | MR | Zbl

[4] Molchanov V. F., “Predstavleniya trekhmernoi gruppy Lorentsa, indutsirovannye predstavleniyami dvumernoi gruppy Lorentsa”, Sb. nauchnykh trudov MGZPI, 39, 1974, 91–116

[5] Molchanov V. F., “Razlozhenie tenzornogo kvadrata predstavleniya dopolnitelnoi serii gruppy $SL(2,\mathbf{R})$”, Funkts. analiz i ego prilozheniya, 9:4 (1975), 79–80 | MR | Zbl

[6] Molchanov V. F., “Razlozhenie tenzornogo kvadrata predstavleniya dopolnitelnoi serii unimodulyarnoi gruppy veschestvennykh matrits vtorogo poryadka”, Sib. matem. zh., 18:1 (1977), 174–188 | MR | Zbl

[7] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[8] Shilov G. E., Matematicheskii analiz (vtoroi spetsialnyi kurs), Nauka, M., 1965 | MR

[9] Burbaki N., Integrirovanie (vektornoe integrirovanie, mera Khaara, svertka i predstavleniya), Nauka, M., 1970 | MR

[10] Tengstrand A., “Distributions invariant under an orthogonal group of arbitrary signature”, Math. Scand., 8 (1960), 201–218 | MR | Zbl

[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii (gipergeometricheskaya funktsiya, funktsii Lezhandra), Nauka, M., 1965

[12] Danford N., Shvarts Dzh. T., Lineinye operatory (spektralnaya teoriya), Mir, M., 1966

[13] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, t. II, Nauka, M., 1970