On the spectrum of a~class of differential operators and some imbedding theorems
Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 1-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral properties of the operator $$ Lu=\frac{(-1)^{n+k}}{\rho(t)}\biggl(\frac{u(t)}{\rho(t)}\biggr)^{(2n+2k)}+\frac{(-1)^k}{\rho(t)}\biggl(V^2(t)\biggl(\frac{u(t)}{\rho(t)}\biggr)^{\!(k)}\biggr)^{\!(k)}\qquad(n,k\geqslant1) $$ are considered. A criterion for the nuclearity of the resolvent, two-sided estimates of the nuclear norm, Green's functions on the diagonal and the norms of the inverse operator are obtained. Bibliography: 21 titles.
@article{IM2_1980_15_1_a0,
     author = {O. D. Apyshev and M. Otelbaev},
     title = {On the spectrum of a~class of differential operators and some imbedding theorems},
     journal = {Izvestiya. Mathematics },
     pages = {1--24},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a0/}
}
TY  - JOUR
AU  - O. D. Apyshev
AU  - M. Otelbaev
TI  - On the spectrum of a~class of differential operators and some imbedding theorems
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 1
EP  - 24
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a0/
LA  - en
ID  - IM2_1980_15_1_a0
ER  - 
%0 Journal Article
%A O. D. Apyshev
%A M. Otelbaev
%T On the spectrum of a~class of differential operators and some imbedding theorems
%J Izvestiya. Mathematics 
%D 1980
%P 1-24
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a0/
%G en
%F IM2_1980_15_1_a0
O. D. Apyshev; M. Otelbaev. On the spectrum of a~class of differential operators and some imbedding theorems. Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a0/