The regularization method for singularly perturbed systems of nonlinear differential equations
Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 571-596

Voir la notice de l'article provenant de la source Math-Net.Ru

The singularly perturbed Cauchy problem for systems of ordinary differential equations is studied. A regularized asymptotic solution for this problem is constructed by means of the method developed by S. A. Lomov for a broad class of linear systems and certain nonlinear scalar equations. In the course of constructing the asymptotic solution systems of partial differential equations containing a singularity are considered. For such systems a theory of normal and unique solvability in a class of uniformly convergent exponential series is developed. Asymptotic convergence of formal solutions is studied for the case of purely imaginary eigenvalues of the matrix of the first variation. Bibliography: 16 titles.
@article{IM2_1980_14_3_a3,
     author = {V. F. Safonov},
     title = {The regularization method for singularly perturbed systems of nonlinear differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {571--596},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a3/}
}
TY  - JOUR
AU  - V. F. Safonov
TI  - The regularization method for singularly perturbed systems of nonlinear differential equations
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 571
EP  - 596
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a3/
LA  - en
ID  - IM2_1980_14_3_a3
ER  - 
%0 Journal Article
%A V. F. Safonov
%T The regularization method for singularly perturbed systems of nonlinear differential equations
%J Izvestiya. Mathematics 
%D 1980
%P 571-596
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a3/
%G en
%F IM2_1980_14_3_a3
V. F. Safonov. The regularization method for singularly perturbed systems of nonlinear differential equations. Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 571-596. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a3/