Class numbers and groups of algebraic groups
Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 547-569

Voir la notice de l'article provenant de la source Math-Net.Ru

The class number of an algebraic group $G$ defined over a global field is the number of double cosets of the adele group $G_A$ with respect to the subgroups of integral and principal adeles. In most cases the set of double cosets has the natural structure of an abelian group, called the class group of $G$. In this article the class number of a semisimple group $G$ is computed, and it is proved that any finite abelian group can be realized as a class group. Bibliography: 24 titles.
@article{IM2_1980_14_3_a2,
     author = {V. P. Platonov and A. A. Bondarenko and A. S. Rapinchuk},
     title = {Class numbers and groups of algebraic groups},
     journal = {Izvestiya. Mathematics },
     pages = {547--569},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - A. A. Bondarenko
AU  - A. S. Rapinchuk
TI  - Class numbers and groups of algebraic groups
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 547
EP  - 569
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/
LA  - en
ID  - IM2_1980_14_3_a2
ER  - 
%0 Journal Article
%A V. P. Platonov
%A A. A. Bondarenko
%A A. S. Rapinchuk
%T Class numbers and groups of algebraic groups
%J Izvestiya. Mathematics 
%D 1980
%P 547-569
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/
%G en
%F IM2_1980_14_3_a2
V. P. Platonov; A. A. Bondarenko; A. S. Rapinchuk. Class numbers and groups of algebraic groups. Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 547-569. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/