Class numbers and groups of algebraic groups
Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 547-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class number of an algebraic group $G$ defined over a global field is the number of double cosets of the adele group $G_A$ with respect to the subgroups of integral and principal adeles. In most cases the set of double cosets has the natural structure of an abelian group, called the class group of $G$. In this article the class number of a semisimple group $G$ is computed, and it is proved that any finite abelian group can be realized as a class group. Bibliography: 24 titles.
@article{IM2_1980_14_3_a2,
     author = {V. P. Platonov and A. A. Bondarenko and A. S. Rapinchuk},
     title = {Class numbers and groups of algebraic groups},
     journal = {Izvestiya. Mathematics },
     pages = {547--569},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - A. A. Bondarenko
AU  - A. S. Rapinchuk
TI  - Class numbers and groups of algebraic groups
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 547
EP  - 569
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/
LA  - en
ID  - IM2_1980_14_3_a2
ER  - 
%0 Journal Article
%A V. P. Platonov
%A A. A. Bondarenko
%A A. S. Rapinchuk
%T Class numbers and groups of algebraic groups
%J Izvestiya. Mathematics 
%D 1980
%P 547-569
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/
%G en
%F IM2_1980_14_3_a2
V. P. Platonov; A. A. Bondarenko; A. S. Rapinchuk. Class numbers and groups of algebraic groups. Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 547-569. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a2/

[1] Bass X., Milnor Dzh., Serr Zh.-P., “Reshenie kongruents-problemy dlya $SL_n$ ($n\geqslant3$) i $Sp_2n$ ($n\geqslant2$)”, Matematika, 14:6 (1970), 64–128 | Zbl

[2] Bondarenko A. A., Rapinchuk A. S., “K otsenke chisla dvoinykh klassov grupp adelei algebraicheskikh grupp”, Dokl. AN BSSR, 22:5 (1978), 397–400 | MR | Zbl

[3] Borevich Z. I., Shafarevich I. R., Teoriya chisel, M., 1972

[4] Veil A., “Adeli i algebraicheskie gruppy”, Matematika, 8:4 (1964), 3–74

[5] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[6] Platonov V. P., “Gruppy adelei i tselochislennye predstavleniya”, Izv. AN SSSR. Ser. matem., 33 (1969), 155–162 | MR | Zbl

[7] Platonov V. P., “Problema silnoi approksimatsii i gipoteza Knezera–Titsa dlya algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 33 (1969), 1211–1219 | MR | Zbl

[8] Platonov V. P., “Dopolnenie k rabote “Problema silnoi approksimatsii i gipoteza Knezera–Titsa dlya algebraicheskikh grupp””, Izv. AN SSSR. Ser. matem., 34 (1970), 775–777 | MR | Zbl

[9] Platonov V. P., “K probleme maksimalnosti arifmeticheskikh grupp”, Dokl. AN SSSR, 200:3 (1971), 530–533 | MR | Zbl

[10] Platonov V. P., “O probleme roda v arifmeticheskikh gruppakh”, Dokl. AN SSSR, 200:4 (1971), 793–796 | MR | Zbl

[11] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[12] Tits Zh., “Klassifikatsiya poluprostykh algebraicheskikh grupp”, Matematika, 12:2 (1968), 110–143

[13] Borel A., “Some finiteness properties of adele groups over number fields”, Publ. Math. IHES, 1963, no. 16, 101–126 | MR | Zbl

[14] Borel A., Serre J.-P., “Théorèmes de finitude en cohomologie galoisienne”, Comm. Math. Helv., 39 (1964), 111–164 | DOI | MR | Zbl

[15] Harder G., “Über die Galoiskohomologie halbeinfacher Matrizengruppen”, Math. Z., 90:4 (1965), 404–428 | DOI | MR | Zbl

[16] Kneser M., “Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen”, Arch. Math., 7:5 (1956), 323–332 | DOI | MR | Zbl

[17] Kneser M., “Starke Approximation in algebraischen Gruppen”, J. Reine und Angew. Math., 218 (1965), 190–203 | MR | Zbl

[18] Lang S., “Algebraic groups over finite fields”, Amer. J. Math., 78:3 (1956), 555–563 | DOI | MR | Zbl

[19] Matsumoto H., “Un théorème de Sylow pour les groupes semi-simples $p$-adiques”, Comptes Rendus Acad. Sci. Paris, 262 (966), 425–427 | MR | Zbl

[20] O'Meara O. T., Introduction to quadratic forms, Berlin, Heidelberg, New York, 1963

[21] Platonov V. P., “Algebraic groups and reduced $K$-theory”, Proceedings of Intern. Congr. Math., Helsinki, 1978

[22] Watson G. L., “One-class genera of positive ternary quadratic forms”, Mathematika, 22:1 (1975), 1–11 | MR | Zbl

[23] Watson G. L., “One-class genera of positive quadratic forms in at least five variable”, Acta Arithm., 26:3 (1975), 309–327 | MR | Zbl

[24] Platonov V. P., Bondarenko A. A., Rapinchuk A. S., “Chisla klassov algebraicheskikh grupp”, Dokl. AN SSSR, 245:1 (1979), 28–31 | MR | Zbl