Local universal algebras and reduced representations of Lie algebras
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 169-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider representations of Lie algebras over a field of characteristic $p>0$. We introduce local universal algebras, and we show that the study of the reduced representations of a Lie algebra reduces to the study of the representations of the local universal algebra of the Lie algebra. In certain cases, this enables us to reduce the study of the reduced representations of a Lie algebra to the study of the representations of a commutative ring. Bibliography: 2 titles.
@article{IM2_1980_14_1_a6,
     author = {A. N. Rudakov},
     title = {Local universal algebras and reduced representations of {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {169--174},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a6/}
}
TY  - JOUR
AU  - A. N. Rudakov
TI  - Local universal algebras and reduced representations of Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 169
EP  - 174
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a6/
LA  - en
ID  - IM2_1980_14_1_a6
ER  - 
%0 Journal Article
%A A. N. Rudakov
%T Local universal algebras and reduced representations of Lie algebras
%J Izvestiya. Mathematics 
%D 1980
%P 169-174
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a6/
%G en
%F IM2_1980_14_1_a6
A. N. Rudakov. Local universal algebras and reduced representations of Lie algebras. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 169-174. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a6/

[1] Rudakov A. N., Predstavleniya algebr Li v kharakteristike $p>0$, Dissertatsiya, M., 1971

[2] Rudakov A. N., Shafarevich I. R., “Neprivodimye predstavleniya prostoi trekhmernoi algebry Li nad polem konechnoi kharakteristiki”, Matem. zametki, 2 (1967), 439–454 | MR | Zbl