On small perturbations of the set of zeros of functions of sine type
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 79-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function of sine type means an entire function $S(z)$ of exponential type $\sigma>\nobreak0$, satisfying the condition $0$ outside some strip $|\operatorname{Im}z|\nobreak H$. With the normalization $S(0)=1$ these functions can be represented in the form \begin{equation} S(z)=\lim_{R\to\infty}\prod_{|\lambda_k|}(1-z\lambda_k^{-1}). \end{equation} Let $\widetilde S(z)$ denote the function obtained from $S(z)$ by replacing $\lambda_k$ by $\lambda_k+\psi_k$ in (1), where $\{\psi_k\}$ is a bounded sequence. In this paper necessary and sufficient conditions on $\{\psi_k\}$ are found, under which $\widetilde S(z)$ is also a function of sine type. Expressions for $\widetilde S(z)$ in terms of $S(z)$ are obtained in the case where $\psi_k=a_1\lambda_k^{-1}+\dots+a_n\lambda_k^{-n}+b_k\lambda_k^{-n}$, where $\{b_k\}\in L^p$, $p>1$. Bibliography: 9 titles.
@article{IM2_1980_14_1_a4,
     author = {B. Ya. Levin and I. V. Ostrovskii},
     title = {On small perturbations of the set of zeros of functions of sine type},
     journal = {Izvestiya. Mathematics },
     pages = {79--101},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a4/}
}
TY  - JOUR
AU  - B. Ya. Levin
AU  - I. V. Ostrovskii
TI  - On small perturbations of the set of zeros of functions of sine type
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 79
EP  - 101
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a4/
LA  - en
ID  - IM2_1980_14_1_a4
ER  - 
%0 Journal Article
%A B. Ya. Levin
%A I. V. Ostrovskii
%T On small perturbations of the set of zeros of functions of sine type
%J Izvestiya. Mathematics 
%D 1980
%P 79-101
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a4/
%G en
%F IM2_1980_14_1_a4
B. Ya. Levin; I. V. Ostrovskii. On small perturbations of the set of zeros of functions of sine type. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 79-101. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a4/

[1] Levin B. Ya., “O bazisakh pokazatelnykh funktsii v $L^2$”, Zapiski fiz.-matem. fakulteta Kharkovskogo gos. un-ta i Kharkovsk. matem. ob-va, ser. 4, 27, 1961, 39–48

[2] Levin B. Ya., “Interpolyatsiya tselymi funktsiyami eksponentsialnogo tipa”, Matematicheskaya fizika i funktsionalnyi analiz, no. 1, FTINT AN USSR, Kharkov, 1969, 136–146 | MR

[3] Levin B. Ya., Tselye funktsii, MGU, M., 1971

[4] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami eksponentsialnogo tipa i ee prilozheniya k razlozheniyam v ryady po eksponentam”, Funktsionalnyi analiz i ego prilozheniya, 8:2 (1974), 85–86 | MR | Zbl

[5] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39 (1975), 657–702 | MR | Zbl

[6] Levin B. Ya., “O funktsiyakh konechnoi stepeni, ogranichennykh na posledovatelnosti tochek”, Dokl. AN SSSR, 65:3 (1949), 265–268 | MR | Zbl

[7] Akhiezer N. I., Levin B. Ya., “Ob interpolirovanii tselykh transtsendentnykh funktsii konechnoi stepeni”, Zapiski fiz.-matem. fakulteta Kharkovskogo gos. un-ta i Kharkovsk. matem. ob-va, ser. 4, 23, 1952, 5–26 | MR

[8] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GTTL, M., 1956

[9] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl