Dirichlet series of Jacquet–Langlands cusp forms over fields of $CM$-type
Izvestiya. Mathematics, Tome 14 (1980) no. 1, pp. 61-78
Cet article a éte moissonné depuis la source Math-Net.Ru
For certain Jacquet–Langlands cusp forms over fields of $CM$-type it is shown that the value at $s=1$ of their Dirichlet series for a certain infinite set of Hecke quasicharacters can be computed as algebraic linear combinations of a finite set of periods of a closed differential form on a real-analytic manifold with singular point. Bibliography: 5 titles.
@article{IM2_1980_14_1_a3,
author = {P. F. Kurchanov},
title = {Dirichlet series of {Jacquet{\textendash}Langlands} cusp forms over fields of $CM$-type},
journal = {Izvestiya. Mathematics},
pages = {61--78},
year = {1980},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a3/}
}
P. F. Kurchanov. Dirichlet series of Jacquet–Langlands cusp forms over fields of $CM$-type. Izvestiya. Mathematics, Tome 14 (1980) no. 1, pp. 61-78. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a3/
[1] Godeman R., “Zametki po teorii Zhake–Lenglendsa”, Matematika, 18:2 (1974), 28–78
[2] Zhake E., Lenglends R., Avtomorfnye formy na $GL(2)$, Mir, M., 1973 | MR
[3] Manin Yu. I., “Nearkhimedovo integrirovanie i $p$-adicheskie $L$-funktsii Zhake–Lenglendsa”, Uspekhi matem. nauk, XXXI:1(185) (1976), 5–53 | MR
[4] Kurchanov P. F., “Kogomologii diskretnykh grupp i ryady Dirikhle, svyazannye s parabolicheskimi formami Zhake–Lenglendsa”, Izv. AN SSSR. Ser. matem., 42 (1978), 588–601 | MR | Zbl
[5] Weil A., Dirichlet series and autoraorphic forms, Lecture Notes in Math., 189, Springer, Berlin, 1971 | Zbl