Dirichlet series of Jacquet--Langlands cusp forms over fields of $CM$-type
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 61-78
Voir la notice de l'article provenant de la source Math-Net.Ru
For certain Jacquet–Langlands cusp forms over fields of $CM$-type it is shown that the value at $s=1$ of their Dirichlet series for a certain infinite set of Hecke quasicharacters can be computed as algebraic linear combinations of a finite set of periods of a closed differential form on a real-analytic manifold with singular point.
Bibliography: 5 titles.
@article{IM2_1980_14_1_a3,
author = {P. F. Kurchanov},
title = {Dirichlet series of {Jacquet--Langlands} cusp forms over fields of $CM$-type},
journal = {Izvestiya. Mathematics },
pages = {61--78},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a3/}
}
P. F. Kurchanov. Dirichlet series of Jacquet--Langlands cusp forms over fields of $CM$-type. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 61-78. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a3/